Ontario Line

Integrated Transit Oriented Communities – Exhibition Station

Draft Transportation Impact Assessment Issued for Rezoning

Site A: 1-1A ATLANTIC AVENUE TORONTO, ONTARIO, M6K 3E7

Site B: 2-20 ATLANTIC AVENUE, 1 JEFFERSON AVENUE TORONTO, ONTARIO

Contract RFS-2019-NAFC-110

PO 214244

HDR Project 10206938

Ontario Line Technical Advisor
TORONTO, ONTARIO
September 2021

Doug Jackson, PE: Project Manager Matt DeMarco, PMP: Deputy Project Manager Tyrone Gan, P. Eng. Principal-In-Charge

Disclaimer

The material in this report reflects HDR's professional judgment considering the scope, schedule and other limitations stated in the document and in the contract between HDR and the client. The opinions in the document are based on conditions and information existing at the time the document was published and do not consider any subsequent changes. In preparing the document, HDR did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that HDR shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party resulting from decisions made or actions taken based on this document.

In preparing this report, HDR relied, in whole or in part, on data and information provided by the Client and third parties that was current at the time of such usage, which information has not been independently verified by HDR and which HDR has assumed to be accurate, complete, reliable, and current. Therefore, while HDR has utilized its best efforts in preparing this report, HDR does not warrant or guarantee the conclusions set forth in this report which are dependent or based upon data, information or statements supplied by third parties or the client, or that the data and information have not changed since being provided in the report. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that HDR shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party resulting from decisions made or actions taken based on this document.

Project Team

Project Manager Carl Wong, P.Eng.

Project Engineer Martin Kaczmarek, P.Eng., PTOE

Technical Support Jacob Louie, EIT

1 Introduction

HDR Corporation was retained by Metrolinx to undertake a Transportation Impact Assessment (TIA) and Parking Assessment for a proposed mixed-use Transit Oriented Community (TOC) development to be located on the future Ontario Line Exhibition Station site.

The subject properties are located on the north side of the future Liberty New Street, between Jefferson Avenue and Hanna Avenue. The existing uses on the sites are generally comprised of low-rise office and parking lot space.

The proposed redevelopment consists of three separate sites:

- Site A: 1-1A Atlantic Avenue
 - Consisting of 265 residential units, 1,078 m² of retail space, and 13,166 m² of office space.
 - The first floor will provide access to the eastern tunnel at Exhibition Station, which
 provides a through connection between Liberty Village and Exhibition Place, and
 emergency egress from the station.
- Site B: 2-20 Atlantic Avenue and 1 Jefferson Avenue
 - Consisting of 303 residential units, 4,226 m² of retail space, and 10,427 m² of office space.
 - The first floor will provide access to an underground concourse for Exhibition Station, which will connect to the Ontario Line and GO Station platforms.

The development site locations and study area are illustrated in **Figure 1-1**. The sites will be highly transit-oriented given the proximity to Ontario Line, GO, and TTC services, and the mixed-use nature of the area which includes employment use and other commercial-retail and services that will support the residential component of the sites. Vehicular parking is proposed on-site at a reduced rate consistent with recently proposed rates in the area.

The Traffic Impact Assessment report includes documentation of the following components:

- Existing Conditions
- Background Traffic Conditions
- Proposed TOC Trip Generation
- Future Total Traffic Conditions with the TOC
- Parking Assessment
- Loading Assessment
- Transportation Demand Management
- Preliminary Findings and Next Steps

Figure 1-1: Study Area and Site Context

1.1 Scope of Work

The scope of work has been prepared in accordance with the **City of Toronto Guidelines for the Preparation of Transportation Impact Studies** (2013), and is as follows:

Study Area	 Bounded by King Street West to the north, Strachan Avenue to the east, Lake Shore Boulevard to the south, and British Columbia Road/Dufferin Street to the west.
Analysis Scenarios	 Existing 2020 Traffic Conditions Future 2030 Background Traffic Conditions (10-year Horizon) Includes general background traffic growth, and growth associated with the Exhibition GO Station and Ontario Line Station Future 2030 Total Traffic Conditions (10-year Horizon) Includes future background traffic volumes plus traffic resulting from the proposed development
Analysis Time Periods	The following time periods were analyzed as they represent peak trip generation times for residential developments: Weekday AM peak hour between 7:00am and 9:00am Weekday PM peak hour between 3:00pm and 6:00pm
Study Area Intersections for Analysis	 The following intersections were analyzed for capacity, level of service, and delays: Dufferin Street and King Street West King Street West and Joe Shuster Way King Street West and Atlantic Avenue

- King Street West and Sudbury Street
- King Street West and Shaw Street
- King Street West and Strachan Avenue
- Strachan Avenue and Fleet Street
- Strachan Avenue and Lakeshore Boulevard
- Lakeshore Boulevard and British Columbia Road
- Dufferin Street/British Columbia Road and Saskatchewan Road
- Dufferin Street and Liberty Street
- Liberty New Street and Dufferin Street (Future Intersection)
- Liberty New Street and Atlantic Avenue (Future Intersection)
- TOC Site Driveway Intersections (Future Intersections)

Parking and Loading Review

A parking and loading assessment was undertaken for the proposed development using the City of Toronto Zoning By-law 569-2013 as the basis of the assessment, and in the context of the site as a transit-oriented community.

Multi-Modal Level of Service (MMLOS)

Multi-modal Level of Service (MMLOS) for the Exhibition TOC development has been reviewed under a separate cover, in the report Ontario Line Exhibition Station Site Plan Review Transportation Impact Assessment (Ontario Line Technical Advisor, May 2021), which was submitted as part of a Site Plan Review Package for the proposed station – referred to herein as the "Station SPR". The Station SPR study assessed the 2041 horizon year, which is 11 years beyond the horizon year assessed in this report. While the station related pedestrian traffic may continue to grow, the TOC related pedestrian traffic will remain relatively constant based on ultimate development of the site, and the presence of the proposed station.

A MMLOS analysis for the 2041 horizon year is included in that assessment and incorporates projected pedestrian demand related to background, TOC, and Station trips to identify pedestrian levels of service at sidewalks, intersection corners and crosswalks, and bus bays. This TOC report does not duplicate the SPR analysis findings but includes a MMLOS analysis of existing pedestrian, bicycle, and transit conditions for the key segments and intersections near TOC sites.

Please refer to the Station SPR report for detailed 2041 horizon year Fruin level of service analysis of the study area, which includes the Exhibition TOC development trip generation.

1.2 Analysis Methodology

1.1.1 Pedestrian Level of Service

The pedestrian analysis within the study area is based on the City of Ottawa Multi-Modal Level of Service (MMLOS) Guidelines, which evaluates the pedestrian LOS based on pedestrian comfort, safety, and convenience. A detailed evaluation of pedestrian density levels of service and intersection HCM analysis can be found in the Ontario Line Exhibition Station Site Plan Review Transportation Impact Assessment (Ontario Line Technical Advisor, May 2021).

1.1.2 Bicycle Level of Service

The bicycle level of service for existing conditions was determined through the City of Ottawa multi-modal level of service methodology, which analyzes the segments and intersections primarily based on qualitative parameters, such as street width, presence / type of dedicated cycling facilities, and vehicular operating speeds.

1.1.3 Transit Analysis

The transit level of service for existing conditions was determined through the City of Ottawa multi-modal level of service methodology, which analyzes the segments and intersections based on the transit facility type, driveway friction, and intersection signal delay.

1.1.4 Automobile Level of Service

Intersection operations were assessed for the study area intersections using the Synchro Traffic Signal Coordination Software Version 10, which employs methodology from the **Highway Capacity Manual** (HCM 2000) published by the Transportation Research Board National Research Council. Synchro can analyze both signalized and unsignalized intersections in a road corridor or network taking into account the spacing, interaction, queues and operations between intersections.

The signalized and unsignalized intersection analysis considers three separate measures of performance:

- The capacity of all intersection movements, represented by the volume to capacity (v/c) ratio;
- The level of service (LOS) for all intersection turning movements as well as for the overall intersection. The overall intersection LOS is based on the average control delay per vehicle (weighted) for the various movements through the intersection; and,
- The forecasted queue lengths (95th percentile queue length) and storage requirements.

LOS is an indicator of how long a vehicle must wait to complete a movement and is represented by a letter between 'A' and 'F', with 'F' being the longest delay. The volume to capacity (v/c) ratio is a measure of the degree of capacity utilized at an intersection. HCM definitions are summarized in **Table 1-1**.

Table 1-1: Highway Capacity Manual Level of Service Definitions

Level of Service (LOS)	Signalized Control Delay per Vehicle (s)	Unsignalized Control Delay per Vehicle (s)	Description
A	≤ 10	≤ 10	ldeal
В	> 10 and ≤ 20	> 10 and ≤ 15	Acceptable
С	> 20 and ≤ 35	> 15 and ≤ 25	Acceptable
D	> 35 and ≤ 55	> 25 and ≤ 35	Somewhat undesirable
E	> 55 and ≤ 80	> 35 and ≤ 50	Undesirable
F	> 80	> 50	Poor

The analysis undertaken in this study also follows the City of Toronto Guidelines for Using Synchro 9 (Including SimTraffic 9¹) (March 18, 2016), City of Toronto 'Guidelines for the Preparation of Transportation Impact Studies²', and City of Toronto 'Traffic Signal Operations Policies and Strategies' (May 2015)³.

https://www.toronto.ca/wp-content/uploads/2017/11/99bc-0_2016-04-28_Guidelines-for-Using-Synchro-9-Including-SimTraffic-9 Final-a.pdf

² http://arris.ca/~arris2/ARCHIVE/traffic-impact-study-guidelines.pdf

³ https://www.toronto.ca/wp-content/uploads/2017/11/91d6-0_2015-11-13_Traffic-Signal-Operations-Policies-and-Strategies_Final-a.pdf

2 Existing Conditions

2.1 Community Context

Liberty Village is a dense urban community in the City of Toronto and has experienced significant growth in recent years with the construction of several new developments, doubling its population between 2011 and 2016. This population growth has largely been on the eastern end of Liberty Village. The community was historically a heavy industrial area and has retained much of the factory architecture throughout its redevelopment.

As shown in **Figure 2-1**, the majority of Liberty Village is currently designated as a Core Employment Area generally to the west of Hanna Ave or a Mixed Use Area generally to the east of Hanna Ave, with a Park area being designated where Allan A. Lamport Stadium is located. South of the railway corridor below Liberty Village, the lands covering Exhibition Place are designated as either Other Open Space Areas or Regeneration Areas.

Figure 2-1: Land Use Designations (City of Toronto Official Plan)

2.2 Site Context

The Exhibition TOC sites are located just north of the future Liberty New Street connection between Jefferson Avenue and Hanna Avenue. The sites will be situated in an area with excellent surface transit service, accommodating short- and long-distance travel through various routes and services, as described in Section 2.4 Existing Transit Services. The nearby Exhibition GO Station and TTC Exhibition Loop will be accessible from Liberty Village via the existing underground tunnel, as well as via the new proposed station headhouse for the Ontario Line station between Jefferson and Atlantic Avenues.

The area is generally mixed-use and there are many amenities in the area that will support both residential and employment uses within this mixed-use downtown urbanized environment.

2.3 Existing Road Network

The community of Liberty Village does not have the same fine-grid network connectivity characteristic of downtown Toronto due to the barriers imposed by the railway corridors to the north and to the south. There are currently no north-south roadway links across the railway corridors between Dufferin Street and Strachan Avenue; however, the community is still well served for automobile trips due to the connections to King Street, Dufferin Street, Strachan Avenue, and the nearby interchange with the Gardiner Expressway.

The existing network and the future Liberty New Street traffic controls and lane configurations in the vicinity of the study area are shown in **Figure 2-2**. All study roadways are under the jurisdiction of the City of Toronto.

The existing arterial and collector road network is described below:

King Street W

King Street is a two-way east-west major arterial street with a posted speed limit of 40 km/h. It has a four-lane cross section, with sidewalks on both sides of the street. There are westbound streetcar stops at Strachan Avenue, Shaw Street, Sudbury Street, Jefferson Avenue, Joe Shuster Way, and Dufferin Street. Eastbound streetcar stops are available at Dufferin Street, Joe Shuster Way, Atlantic Avenue, Sudbury Street, Shaw Street, and Strachan Avenue.

Dufferin Street

Dufferin Street is a two-way north-south minor arterial street with a speed limit of 50 km/h. It has a four-lane cross section north of Springhurst Avenue, and a two-lane cross section to the south. Streetcars operate in mixed traffic north of Springhurst Avenue where the Dufferin Loop is located; stops are located northbound at Liberty Street and King Street, and southbound at King Street, Liberty Street, and Springhurst Avenue. Dufferin Street connects to British Columbia Road within Exhibition Place, which in turn provides access to Lake Shore Boulevard and Gardiner Expressway.

Liberty Street

Liberty Street is a two-way east-west collector road with a posted speed limit of 40 km/h. It has a two-lane cross-section within the study area and has no centerline on midblock sections of roadway. Liberty Street is currently the only roadway in Liberty Village that connects Dufferin Street and Strachan Avenue, until the Liberty New Street connection is constructed to the south.

Strachan Avenue

Strachan Avenue is a two-way north-south major arterial street with a speed limit of 40 km/h. It has a four-lane cross section, with sidewalks on both sides of the street. Bulwer Street also provides primary access to some buildings on the north side of the street, such as Ogden Jr Public School.

Lake Shore Boulevard

Lake Shore Boulevard is a two-way east-west major arterial street with a speed limit of 60 km/h. Through the study area, it has a 6-lane cross-section, with three through-lanes per direction, and auxiliary left-turn lanes at major intersections.

Figure 2-2: Existing Network and Future Liberty New Street Lane Configuration and Traffic Control

2.4 Existing Transit Services

The TTC operates streetcar services along King Street, Dufferin Street (south of King), and Fleet Street. All surface transit routes provide direct access to the Toronto Subway System via Line 1 (Yonge-University-Spadina) at St Andrew Station and Union Station, or Line 2 (Bloor-Danforth) at Dufferin Station, and Bathurst Station. Regional rail service is provided by GO Transit and can be accessed from the existing Exhibition GO Station which will be integrated with the Exhibition Ontario Line Station.

Existing transit services in the vicinity of Exhibition Station are summarized below and an excerpt from the TTC system map is shown in **Figure 2-3**.

- 504/509/511 Streetcar. The 511 and 509 streetcar routes directly serve Exhibition Place with a stop on the south side of the Gardiner Expressway at Manitoba Drive and Nova Scotia Drive at the Exhibition Loop. The 504 streetcar route runs east-west along King Street. The 504 streetcar operates on a 3-minute headway and has a nearby stop at Dufferin Street / Atlantic Avenue. The 509 and 511 streetcar routes operate on approximately 6 to 8 minute headways with a nearby stop at the Exhibition GO Station.
- 29A and 29C Bus. The 29A bus runs north-south along Dufferin Street terminating at the
 Dufferin Gate Loop. The 29C bus directly serves Exhibition Place with limited service
 stopping at the Exhibition Loop and Princes' Gate Loop. The 29C (Wilson StationExhibition/Princes' Gate) branch operates during the peak periods from Monday to
 Friday, and during the daytime on Saturdays, Sundays, and holidays during the fall and
 winter. Route 29 operates on an 8-minute headway and the nearest available stop is
 located at Dufferin Gate / Liberty Street.
- 121A and 121D Bus. The 121 Fort York-Esplanade bus route operates between Exhibition Place, the Fort York neighbourhood and the Distillery neighbourhood. Two services are operated. The 121A (Exhibition (Princes' Gates)-Distillery via Union Station) branch operates all day, every day, outside the summer months. The 121D (Ontario Place-Cherry Beach via Union Station and Distillery) seasonal branch operates from mid-May to mid-October.
- 63 Ossington Bus. The 63 Ossington bus route operates between Eglinton West Station on Line 1 Yonge-University and King Street West and the Liberty Village, generally in a north-south direction. The route does not directly serve the Exhibition Place or Ontario Place sites. Service between Liberty Village and St Clair Avenue is part of the 10 Minute Network, and operates 10 minutes or better, all day, every day. Two services are operated. The 63A (Eglinton West Station-Liberty Village) branch operates between 5 AM and 2 AM, seven days a week, with the 636 Ossington Blue Night bus (Ossington to Eglinton) operating between 2 AM and 5 AM. The 63B (St Clair-Liberty Village) short-turn branch operates during the peak periods, from Monday to Friday only. Route 63 operates on a headway of 3 to 5 minutes and has a nearby stop located at Liberty Street / Atlantic Avenue.
- Lakeshore West GO Line. The Lakeshore West line delivers two-way, all-day service seven days a week, from Toronto to Aldershot. It delivers rush-hour service from Hamilton to Toronto in the morning and back again in the afternoon. On weekdays,

- trains run on the Lakeshore West line every 30 minutes, with 15 minute frequencies in the peak flow direction (EB in AM peak period and WB in PM peak period).
- Overall, the study area has excellent transit coverage for both short-distance and longdistance trips and provides excellent headways for passengers. Transit priority measures such as those currently along King Street also help improve the speed, reliability, and attractiveness of transit for transportation across the City.

Figure 2-3: Existing Transit Services

2.5 Existing Cycling and Pedestrian Facilities

The surrounding areas of Liberty Village and Exhibition Place have significant gaps in the existing sidewalk network and sidewalks that are partially obstructed by utility poles, fire hydrants, bicycle posts, and garbage bins, which constrain effective sidewalk widths. Gaps in the sidewalk network require pedestrians to walk across commercial boulevard parking spaces or on the roadways which can present unsafe conditions, especially as the population of Liberty Village continues to grow, and that a significant supply of public and private parking in the community accommodates automobile trips in the area. Examples of missing links in the pedestrian network are illustrated below in **Figure 2-4** and **Figure 2-5**.

An excerpt of The Toronto Cycling Map from the City of Toronto website is highlighted in **Figure 2-6**. Existing connections that were not included in the City's cycling map include Douro Street (both directions), Saskatchewan Road between Dufferin Street and Manitoba Drive (north side), Princes' Boulevard between Manitoba Drive and Canada Boulevard (both directions), and New Brunswick Way (both directions).

The existing cycling network within the study area is rather limited, particularly throughout Liberty Village and the surrounding neighbourhoods which would be most likely to travel to and from Exhibition Station via bicycle due to the proximity. The only significant bicycle facilities in the area are located on Strachan Avenue, and the Martin Goodman Trail south of Lake Shore Boulevard. Richmond Street and Adelaide Street, and King Street (from the Transit Priority Corridor) east of Bathurst provide for excellent connections into the downtown core of the City. The Liberty Village New Street EA Study prepared by LEA in October 2015 identifies a new multi-use trail as an additional cycling facility that will connect Dufferin Street to Strachan Avenue once completed.

Figure 2-4: Liberty Street / Fraser Avenue Pedestrian Facilities (Facing East)

Figure 2-5: Liberty Street Pedestrian Facilities (Facing East Towards Mowat Avenue)

Figure 2-6: Existing Cycling Facilities

hdrinc.com 100 York Boulevard, Suite 300, Richmond Hill, ON, CA L4B 1J8

(289) 695-4600

2.6 Walkshed Analysis

A multi-modal level of service analysis was undertaken for the key links around the TOC sites. The assessment was completed using the City of Ottawa's Multi-Modal Level of Service (MMLOS) Methodology⁴. Due to the scope of this study and data availability, the following items are noted:

- Existing facility widths were estimated based on aerial photography (Google);
- Daily curb lanes volumes were estimated based on available traffic data and street classification; and
- Intersection delays for pedestrians were estimated based on estimated cycle lengths and walk times.

2.6.1 Existing Pedestrian Level of Service

The pedestrian level of service (PLOS) on roadway segments in the study area were analyzed using the methodology detailed in the City of Ottawa MMLOS Guidelines. The detailed inputs used for the analysis can be found in **Appendix A**.

The PLOS for the existing network is illustrated below in Figure 2-7.

Based on the PLOS analysis, the following observations were made on the pedestrian network:

- No Sidewalks: Several of the north-south connections in Liberty Village do not currently
 have sidewalks available and instead accommodate parking for vehicles along these
 stretches. As Liberty Village continues to develop, it will be important that these
 pedestrian connectivity gaps be filled to ensure that pedestrians can move safely around
 the area, especially as demand grows to and from the future Liberty New Street and
 Ontario Line station. Pedestrian gaps are also noted throughout the Exhibition Place
 area
- Narrow Effective Sidewalk Width: The north side of Liberty Street between Mowat Avenue and Atlantic Avenue has several locations with constrained sidewalks due to utility poles, fire hydrants, and garbage bins being placed on the sidewalk, resulting in effective sidewalk widths of less than or equal to 1.5 metres. These narrow effective sidewalk widths are substandard pedestrian clearway by current standards for accessibility. These locations make it difficult for pedestrians to pass by each other and do not easily accommodate mobility impaired users on the sidewalk. Similarly, obstructed sections of sidewalk were observed on the east side of Fraser Avenue (south of Liberty Street), south side of King Street (between Dufferin Street and Joe Shuster Way, and the east side of Hanna Avenue (north of Liberty Street). A narrow sidewalk width of 1.5 metres is observed on Liberty Street on the north side between Hanna Avenue and Pirandello Street, and the south side between Lynn Williams Street and Pirandello Street.

Multi-Modal Level of Service (MMLOS) Guidelines, City of Ottawa, https://app05.ottawa.ca/sirepub/cache/2/csqkiwq23jjanozog31sq3r1/31504601272021034735933.PDF

• Dufferin Street / Saskatchewan Road: The intersection operates at a LOS of F for pedestrians due to the poor crossing conditions on the east leg of the intersection. The east leg has a wide crossing distance of approximately 22 metres and conflicts with a slightly channelized right turn lane which results in an increased approaching speed of vehicles. Pedestrian comfort and safety at the intersection would improve by reducing the sidewalk corner curb radii on the east side of the intersection and bringing the westbound right turn lane to a 90-degree intercept angle.

Figure 2-7: Existing Pedestrian Level of Service

2.6.2 Bicycle Level of Service

The bicycle level of service (BLOS) on roadway segments in the walkshed area were analyzed using the methodology detailed in the City of Ottawa MMLOS Guidelines. The detailed inputs used for the analysis can be found in **Appendix A**.

The following observations are made for bicycle levels of service in the network:

 Using the Ottawa MMLOS methodology, many of the smaller roadways within the Liberty Village community operate at a BLOS of A, despite the absence of separated bicycle facilities. Bicycles would be expected to experience higher degrees of safety and comfort on the slow and narrow roadways, however, it is a limitation of the methodology that onstreet parking obstructions and traffic demand are not considered for mixed traffic facilities, as these would also affect the cycling experience by increasing friction and conflict with automobiles.

Figure 2-8: Existing Bicycle Level of Service

2.6.3 Transit Level of Service

The transit level of service (TLOS) on roadway segments in the study area were analyzed using the methodology detailed in the City of Ottawa MMLOS Guidelines. Specifically, the factor of transit speed vs. posted speed was estimated based on the driveway and parking friction thresholds for mixed traffic, i.e. segments that experience limited parking/driveway friction result in an LOS of "D", and segments with moderate friction result in an LOS of "E". The detailed inputs used for the analysis can be found in **Appendix A**.

As shown in the transit LOS figure, the segments with transit routes generally operate at a LOS of "D" in the walkshed area with the exception of the segment of Liberty Street between Atlantic Avenue and Hanna Avenue, and along Dufferin Street between King Street and Springhurst Avenue. The LOS E segment along Liberty Street experiences a higher level of friction than others in the area due to a large parking lot on the southern side of Liberty Street. The parking lot is expected to primarily accommodate commuter trips which will increase friction and lower the speed of transit vehicles on the segment during the peak hours. A higher transit friction is experienced along Dufferin Street due to a relatively high number of driveways and on-street parking along the segments.

Figure 2-9: Existing Transit Level of Service

2.7 Existing Traffic Volumes

A summary of the intersections and count sources for traffic volumes are provided in **Table 2-1**. HDR used counts from the 2020 Ontario Line Environmental Assessment prepared by AECOM and HDR to maintain consistency with the study where possible and supplemented the counts with additional counts from the City's database or Synchro models. The existing volumes are described as representing 2020 conditions in order to relate them to the 2030 future horizon year, however, they represent typical pre-pandemic traffic volumes and conditions as they were developed using pre-pandemic volumes that were adjusted with a 1% annual growth factor to represent a 'typical' 2020 demand. The annual growth rate is considered to be conservative relative to growth assumptions used in traffic impact studies undertaken for nearby developments but is consistent with the Existing Transportation Conditions Report prepared by AECOM for the Ontario Line Environmental Assessment.

Appendix C shows the existing traffic and active transportation volumes at the study area intersections. Individual intersection peak hour traffic volumes are shown and were used in the study analysis, which is more conservative than calculating a global peak hour set of volumes. Volume balancing between intersections was also reviewed.

Table 2-1: Traffic Count Sources

Synchro / TIS ID	Intersection	Source used
539	King/Dufferin	2017 King Street Synchro Model
2081	King/Joe Shuster Way	2017 King Street Synchro Model
1912	King/Atlantic	2017 King Street Synchro Model
1851	King/Sudbury	2017 King Street Synchro Model
1628	King/Shaw	2017 King Street Synchro Model
538	King/Strachan	2017 King Street Synchro Model
1449	Dufferin/Liberty	2020 Ontario Line Existing EA
2134	Dufferin/Saskatchewan	2016 Dufferin Street Synchro Model
571	Strachan/Fleet	2014 Pan Am Park Synchro Model
1344	Lake Shore/British Columbia	2014 Pan Am Park Synchro Model
222	Lake Shore/Strachan	2014 Pan Am Park Synchro Model

To be conservative, counts were grown by an annual growth factor of 1% to reach existing 2020 volumes, which is consistent with the 2020 Ontario Line EA Existing Transportation Conditions Report prepared by AECOM, and conservative relative to Traffic Impact Studies undertaken for proposed developments nearby.

2.8 Existing Traffic Operations

Based on the existing traffic volumes shown in **Appendix C** and the existing road network illustrated in **Figure 2-2**, intersection operations were assessed using the Synchro 10 traffic analysis software. Existing signal timings are provided in **Appendix B**.

As discussed previously, frequent streetcar service runs in mixed traffic along King Street, as well as along Dufferin Street south of King Street. An adjusted ideal saturation flow rate was derived along King Street to estimate the impact of the streetcars running in mixed traffic based on the operational conditions during the AM and PM peak hours. Assuming that a movement would be operating at-capacity during either the AM or PM peak hour in the existing conditions between Dufferin Street and Strachan Avenue, an ideal saturation flow rate of 1250 was identified and applied along King Street east-west.

Table 2-2 summarizes the level-of-service (LOS), volume/capacity ratio (v/c ratio), and 95th percentile queue for each movement under existing conditions using the HCM 2000 methodology. Detailed Synchro results and reports for all study area intersections are provided in **Appendix D**.

Under existing traffic conditions, the majority of movements are well within capacity. However, the following critical movements exist:

- Eastbound approach to King/Dufferin during the AM peak hour operates at capacity, and the southbound approach is approaching capacity during the AM and PM peak hours. The eastbound approach experiences high delays as a result of the mixed streetcar traffic.
- Northbound approach to Dufferin/Liberty during the AM peak hour operates near capacity
 due to the heavy right turning flows into Liberty Village, causing the lane to operate as a

dedicated right turn lane. The westbound approach to the intersection operates at capacity during the PM peak hour due to the heavy outbound flow in the evenings. Alternative routing options for traffic to and from the south are limited without the construction of Liberty New Street.

- Westbound at King/Strachan during the AM peak hour.
- Northbound left and southbound-through at Strachan/Fleet during the PM peak hour. The northbound left movement is at capacity.
- Eastbound through-right at Lake Shore/Strachan operates near capacity during the AM peak hour. During the PM peak hour, the eastbound left and westbound-through movements are near or at capacity.
- Eastbound-through movement at Lake Shore/British Columbia operates at capacity during the PM peak hour.

Table 2-2: Existing Conditions - Summary of Traffic Analysis Results

			Al	/I Peak H	our	PM Peak Hour		
Intersection	Movement	Storage length	LOS	v/c Ratio	95th %ile Q (m)	LOS	v/c Ratio	95th %ile Q (m)
	Overall	-	D	0.92	-	С	0.76	-
King/Dufferin	EBLTR	267	D	1.00	90.7	В	0.57	45.8
(Signalized)	WBLTR	292	С	0.80	22.4	В	0.66	67.7
(Olgridii20d)	NBLTR	188	В	0.43	13.0	С	0.62	50.4
	SBLTR	361	D	0.93	71.2	Е	0.98	70.0
	Overall	-	В	0.62	-	Α	0.46	-
King/Joe Shuster	EBLT	292	В	0.63	38.8	Α	0.29	26.0
Way (Signalized)	WBTR	167	Α	0.53	35.0	Α	0.47	44.7
	SBLR	76	С	0.56	45.2	С	0.42	29.1
	Overall	-	С	0.74	-	В	0.53	-
King/Atlantic	EBTR	167	В	0.78	54.3	В	0.50	27.8
(Signalized)	WBLT	294	В	0.78	56.2	В	0.50	40.8
(Olghalized)	NBL	30	С	0.64	50.9	С	0.55	43.7
	NBR	174	С	0.41	27.5	С	0.53	36.4
	Overall	•	В	0.75	•	В	0.45	-
King/Sudbury	EBLTR	294	В	0.72	56.8	Α	0.36	31.8
(Signalized)	WBLTR	175	В	0.67	49.8	Α	0.45	39.5
(Olghalized)	NBLTR	134	С	0.02	3.2	0	0	0
	SBLTR	172	D	0.81	72.4	С	0.44	32.3
	Overall	•	В	0.63	•	В	0.57	-
King/Shaw	EBLTR	175	В	0.72	47.9	Α	0.39	27.3
(Signalized)	WBLTR	231	В	0.57	35.5	В	0.57	49.4
(Olghalized)	NBLTR	103	С	0.47	29.1	С	0.58	33.0
	SBLTR	356	В	0.32	16.1	С	0.49	26.4
	Overall	-	С	0.82	-	С	0.74	-
Dufferin/Liberty	EBLTR	82	С	0.01	0.4	В	0.02	3.7
(Signalized)	WBLTR	82	D	0.80	66.3	Е	1.00	146.8
(Oighanzed)	NBLTR	225	В	0.98	82.4	В	0.46	m46.0
	SBLTR	188	С	0.61	42.7	В	0.41	35.0
Dufferin/	Overall	-	Α	0.40	-	Α	0.53	-
Durrenn/ Saskatchewan	WBL	30	D	0.15	5.6	С	0.20	14.9
(Signalized)	WBR	124	С	0.07	5.6	С	0.09	8.3
(Cignalized)	NBT	241	Α	0.28	53.1	В	0.52	96.7

			AM Peak Hour			PM Peak Hour		
Intersection	Movement	Storage length	LOS	v/c Ratio	95th %ile Q (m)	LOS	v/c Ratio	95th %ile Q (m)
	NBR	15	Α	0.03	5.5	Α	0.02	4.9
 	SBL	30	Α	0.14	9.1	Α	0.20	0.5
	SBT	167	Α	0.39	59.8	Α	0.57	73.7
	Overall	-	С	0.86	-	В	0.59	-
	EBLTR	231	С	0.75	55.2	В	0.36	29.8
King/Strachan	WBLTR	334	D	0.94	70.4	Α	0.56	16.3
	NBL	25	С	0.32	26.6	C	0.48	24.6
(Signalized)	NBTR	400	D	0.75	91.3	С	0.63	62.8
	SBL	25	С	0.17	7.4	С	0.14	7.8
	SBTR	355	С	0.31	41.3	С	0.35	47.9
	Overall	-	С	0.57	-	D	0.80	-
	EBL	25	D	0.40	39.5	D	0.58	57.6
	EBTR	119	D	0.29	46.2	C	0.18	21.0
0, 1, (5)	WBLT	205	D	0.60	71.9	D	0.62	67.0
Strachan/Fleet	WBR	50	С	0.07	2.9	С	0.05	0.0
(Signalized)	NBL	30	С	0.23	28.4	F	0.99	77.7
	NBTR	181	С	0.59	124.5	С	0.60	128.4
	SBL	25	C	0.21	19.2	C	0.37	32.5
	SBTR	217	C	0.34	68.6	D	0.85	228.9
	Overall	-	D	0.83	-	D	0.95	-
	EBL	60	Е	0.95	145.8	F	1.01	165.7
	EBTR	286	С	0.98	295.3	В	0.53	98.6
Lake Shore/	WBL	60	C	0.16	6.3	C	0.08	3.9
Strachan	WBT	172	D	0.64	94.6	D	0.95	211.7
(Signalized)	NBLTR	92	0	0	0	0	0	0
(e.g.ianzea)	SBL	140	Č	0.22	35.1	D	0.46	68.5
	SBLT	181	C	0.20	34.9	D	0.44	68.8
	SBR	50	В	0.14	9.9	В	0.30	24.5
	Overall	-	C	0.65	J.0	D	0.92	_ 1.0
Lake Shore/British	EBL	15	В	0.04	3.2	D	0.03	7.6
Columbia	EBT	387	C	0.76	119.0	F	1.11	201.0
(Signalized)	WBR	80	C	0.14	0.0	E	0.79	72.9
(Olghanzoa)	NBTR	776	C	0.67	77.3	C	0.89	252.0
	Overall	-	A	0.31		A	0.31	202.0
	EBL	30	A	0.00	0.3	A	0.00	0.3
	EBTR	140	A	0.32	26.3	A	0.32	26.3
British	WBL	20	A	0.00	0.3	A	0.00	0.3
Columbia/Yukon	WBT	241	A	0.24	18.3	A	0.24	18.3
(Signalized)	WBR	20	A	0.00	0.0	A	0.00	0.0
	NBLTR	68	Ĉ	0.00	4.6	C	0.00	4.6
	SBLTR	97	C	0.09	0.0	C	0.09	0.0
Note: LOS - level of service								

Note: LOS = level of service; v/c = volume to capacity ratio; Critical movements are highlighted in **red** as defined by the City's TIS Guidelines.

3 Background Traffic Conditions

3.1 Planned Roadway Improvements

A new street along the southern boundary of Liberty Street is proposed, named "Liberty New Street". The new street will have a two-lane cross-section and will extend between Dufferin Street and Strachan Avenue, immediately north of the railway corridor, intersecting with Mowat Avenue, Fraser Avenue, Jefferson Avenue, Atlantic Avenue, Hanna Avenue, and Pirandello Street. Sidewalks will be provided along the north side of Liberty New Street, and a multi-use path will be provided along the south side to accommodate pedestrians and cyclists. Since the control type at each intersection was not specified in the EA, the intersection control measures recommended in the Ontario Line Exhibition Station Site Plan Review Transportation Impact Assessment (Ontario Line Technical Advisor, May 2021) were carried forward, with the intersection of Jefferson Avenue and Liberty New Street being all-way stop-controlled, Atlantic Avenue and Liberty New Street being signalized, Dufferin Street and Liberty New Street being signalized, and Strachan Avenue and Liberty New Street being a right-in/right-out configuration.

Liberty New Street was assumed to be completed by the 2030 analysis horizon year.

3.2 Planned Transit Improvements

The following future transit improvements are expected in the study area as part of the planned and committed improvements from Metrolinx and the TTC:

- Ontario Line: Exhibition Station will be a terminal station for the proposed Ontario Line subway, which will operate at 90-second headways, connecting Liberty Village and Exhibition Place with the neighbourhoods along the Ontario Line alignment to the east. Exhibition Station will also provide convenient access to the Lakeshore West GO rail and TTC streetcar services nearby.
- Lakeshore West GO Train: GO train frequencies are expected to increase over time
 following electrification of the corridor, resulting in 15-minute peak service, and 30minute off peak services in both directions. New eastbound and westbound express GO
 platforms will be added to Exhibition Station, to be located in the middle of the station
 just north of the eastbound local GO platform at the southern end.
- Streetcar Extension: The TTC has plans to extend the existing streetcar services from the Exhibition Loop to the Dufferin Gates Loop as part of the Waterfront LRT, providing enhanced streetcar connections within the network west of Exhibition Place. Changes resulting from the extension project will include:
 - o New westbound streetcar platform at Manitoba Drive / Nova Scotia Avenue;
 - Possible grade-separated north-south crossings for pedestrians at Manitoba Drive / Nova Scotia Avenue to be used during special event peak hours;
 - New streetcar stop at Centennial Park for both directions, located north of Centennial Park east of Dufferin Street. The west side of the intersection to be protected for a future westerly extension; and
 - Signalization of Dufferin Street at the Dufferin Loop.

Bus Transit Services: Bus bays will be located on Liberty New Street to accommodate redirection of bus routes through Liberty Village. The westbound bus bay will be located between Jefferson Avenue and Atlantic Avenue, and the eastbound bus bay will be located just east of Atlantic Avenue (based on current assumptions and subject to change based on City of Toronto and TTC future plans). The new bus bays will accommodate Route 29A (Dufferin) with a 3.3-minute headway, 63 (Ossington) with a 3.5-minute headway, and 929 (Dufferin Express). The planned future routes in the vicinity of Exhibition Station are illustrated in Figure 3-1.

Based on the above planned service improvements, the future growth around Exhibition Station will be serviced with multiple modes of public transit, providing connecting options in all directions.

Figure 3-1: Future Transit Routes

3.3 Background Traffic Volumes

Background traffic volumes are comprised of existing traffic volumes plus general background traffic growth, trip reassignment due to the future Liberty New Street connection, and demand growth associated with Exhibition GO and Ontario Line Station.

Future Background traffic volumes were derived in the following manner:

- 1. The existing trips associated with the Exhibition GO Station were removed from the network (since new forecasts for the integrated station will be added).
- 2. A compound annual growth rate of 2% per year was applied between 2020 and 2030 to reflect background traffic growth, including growth associated with nearby developments.
- 3. Traffic volumes within the study area were reassigned to reflect new patterns expected following the completion of Liberty New Street, between Dufferin Street and Strachan Avenue.

- В
- 4. The future Exhibition GO Station trips were added to the network, which include a small number of vehicle trips associated with passenger pick-up/drop-off, as well as walking, cycling, and transit trips to and from the GO station.
- 5. Trips associated with Exhibition Ontario Line Station were assigned to the network, which also include a small number of vehicle trips associated with passenger pick-up/drop-off, as well as walking, cycling, and transit trips to and from the Ontario Line Station.
- 6. Trips to and from the proposed future bus bays that don't use either the GO station or the OL station were also added to the network in order to assess traffic operations at the intersections along Liberty New Street.

It is noted that future growth from Exhibition Place has been solely estimated based on the forecasted demand growth from the Metrolinx EMME model for the Greater Golden Horseshoe, and additional trips have not been assigned to account for any potential redevelopment plans within Exhibition Place or Ontario Place.

3.3.1 Existing Exhibition GO Station Trips

The existing trips generated by the Exhibition GO Station within the study area was estimated to be removed before the application of the compound annual background growth rate. The future trips were then added on top of the grown traffic volumes.

This process relied on TTS data, which is collected by a survey of households within the Greater Golden Horseshoe including the Greater Toronto Area. The TTS data summarizes travel patterns and other related transportation information that can be used to aid in planning, such as mode splits. The 2016 TTS divides geographical areas into 'zones' for the purposes of determining trip patterns from one zone to another.

The following methodology was applied in the calculation of the existing Exhibition GO Station trip layers:

- 1. The daily boarding and alighting trips and existing mode splits were taken from Metrolinx's 2016 GO Rail Station Access Plan to determine the daily trips per mode at Exhibition GO Station.
- 2. The 2016 Transportation Tomorrow Survey (TTS) dataset was queried for transit boarding and alighting trips at Exhibition GO Station in 15-minute time intervals to determine the conversion of daily trips to AM and PM peak hour trips. The conversion factors were applied to the daily trips by mode calculated with the GO Rail Station Access Plan data.
- 3. The 2016 TTS dataset was queried to identify the origin-destination trip travel patterns by mode to and from the existing Exhibition GO Station, and the distribution patterns were applied to the AM and PM peak hour trips by mode.
- 4. The existing Exhibition GO Station trips by mode were subtracted from the study area network.

В

To identify the AM and PM peak hour of total station usage (boardings plus alightings), the following assumptions were made for the 2016 TTS data to estimate the time of day a trip would use the station:

- Boardings: It was assumed that the time of arrival to the station to board a train was equal to the start time of the trip.
- Alightings: It was assumed that alightings from the station represent a point near the end
 of a trip. Since alightings at a station generally occur well after the start time of a
 commute, it was assumed that all commute trips using the station are one hour in
 duration. Therefore, the alighting time of a trip was assumed to be one hour after the
 start time of the trip indicated by the TTS data.

The total hourly demand at Exhibition GO Station based on the 2016 TTS data queries was used to identify the AM and PM peak hour and the corresponding peak hour demand relative to the daily demand. The ratio of AM and PM peak hour demand to daily demand (summarized in **Table 3-1**) was applied to the daily demand from the GO Rail Station Access plan to identify the boarding and alighting demand by mode during the AM and PM peak hours (summarized in **Table 3-2** and **Table 3-3** for boardings and alightings, respectively).

Table 3-1: 2016 TTS Data on Exhibition GO Station Usage

Direction	Daily Trips	AM Peak Hour Trips	PM Peak Hour Trips	AM Pk Hr: Daily Ratio	PM Pk Hr: Daily Ratio
Boardings	2,158	155	759	7%	35%
Alightings	2,198	585	280	27%	13%

Table 3-2: Estimated 2016 Peak Hour Boardings

Mode	Mode Split*	Daily Boardings	AM Pk Hr: Daily Ratio	AM Peak Hour	PM Pk Hr: Daily Ratio	PM Peak Hour
Total Boardings	100%	1,650*		119		580
Walk	76%	1,262		91		444
Local Transit	17%	275	7%	20	35%	97
Cycling	1%	16		1		6
Pickup Dropoff	6%	97		7		34

*Source: 2016 GO Rail Station Access Plan

Table 3-3: Estimated 2016 Peak Hour Alightings

Mode	Mode Split*	Daily Alightings	AM Pk Hr: Daily Ratio	AM Peak Hour	PM Pk Hr: Daily Ratio	PM Peak Hour
Total Alightings	100%	1,650		439		210
Walk	76%	1,262		336		161
Local Transit	17%	275	27%	73	13%	35
Cycling	1%	16		4		2
Pickup Dropoff	6%	97		26		12

*Source: 2016 GO Rail Station Access Plan

The 2016 TTS data that contained trips using Exhibition GO Station, in conjunction with knowledge of the local transportation network, were also used to estimate trip distribution and assignment of these existing station trips for each mode as described below:

- For PUDO trips, the TTS dataset contained trips destined to and from the traffic zones containing the existing GO station whose trip purpose was to "facilitate passenger".
- For all other modes, including walking trips transferring to and from other transit routes, pure-walking trips, and bike trips, the TTS dataset contained all trips whose boarding or alighting station was the existing Exhibition GO Station.

The directional distributions of existing GO station PUDO and active transportation trips are shown in **Table 3-4** and **Table 3-5**. TTS data is shown in **Appendix E**.

Table 3-4: Directional Distribution for Existing GO Station for PUDO Trips

Time Periods		AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
	NW	0%	17%	0%	0%
	N	9%	0%	0%	9%
	NE	8%	5%	0%	62%
Local Short-Distance	E	27%	0%	0%	29%
Trips	SE	0%	0%	0%	0%
·	S	0%	0%	0%	0%
	SW	0%	0%	0%	0%
	W	0%	0%	0%	0%
	NW	0%	0%	0%	0%
	N	0%	0%	0%	0%
	NE	0%	34%	24%	0%
Regional Long-Distance	E	12%	0%	0%	0%
Trips	SE	0%	0%	0%	0%
	S	0%	0%	0%	0%
	SW	0%	0%	0%	0%
	W	44%	44%	76%	0%
Total		100%	100%	100%	100%

Table 3-5: Directional Distribution for Existing GO Station for Walk and Bike Trips

Time Periods		AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
	NW	6%	1%	1%	4%
	N	33%	2%	4%	13%
	NE	9%	17%	19%	21%
Local Short-Distance	E	52%	79%	73%	41%
Trips	SE	0%	0%	0%	21%
	S	0%	0%	0%	0%
	SW	0%	0%	1%	0%
	W	0%	0%	0%	0%
	NW	0%	0%	0%	0%
Regional Long-Distance	N	0%	0%	0%	0%
Trips	NE	0%	0%	1%	0%
	E	0%	0%	0%	0%

Time Periods		AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
	SE	0%	0%	0%	0%
	S	0%	0%	0%	0%
	SW	0%	0%	0%	0%
	W	0%	0%	1%	0%
Total		100%	100%	100%	100%

The multi-modal assignment for the existing GO station trips is shown in **Appendix C**.

3.3.2 General Background Automobile Growth

The background traffic growth per year was estimated based on automobile travel demand data from Metrolinx's 2041 macroscopic travel demand forecasting model for the study area zones, relative to the 2016 TTS demand for the same area coverage. All automobile trips that began or ended in these zones were aggregated for the 2041 and 2016 years. A compound annual background growth rate of 2% per year was determined from the Metrolinx model outputs. The 2% per year growth rate was applied between 2020 and 2030. As the Metrolinx model includes assumptions for nearby developments, it was assumed that the increase in trips generated by nearby planned developments has been incorporated through the annual growth. These growth rates were applied to:

- All through-movements along major and minor arterial streets, which include Dufferin Street, King Street West, Strachan Avenue, and Lakeshore Boulevard; and
- All left and right-turning movements at minor intersections along King Street West and Dufferin Street. This growth component was assumed to represent all future background developments within Liberty Village until the year 2030.

Existing trips associated with Exhibition GO station were removed from the network before the above growth rate was applied.

A compound annual background growth of 1.0% was assumed for all pedestrian and bicycle demand in the study area. The general grown traffic is shown in **Appendix C**.

3.3.3 Liberty New Street Traffic Reassignment

The Liberty New Street connection that will be constructed just north of the railway corridor below Liberty Village between Dufferin Street and Strachan Avenue will provide additional routing options to traffic in the vicinity and will help support the development of lands above the railway corridor. The forecasted trip change shown in Figure 6-6 and Figure 6-7 of the Transportation Report of the Liberty Village New Street EA Study prepared by LEA in October 2015 was used to estimate proportional changes in the future traffic patterns following the completion of Liberty New Street.

The change in volumes as a result of Liberty New Street is shown in **Appendix C** and the total future background traffic volumes are shown in **Appendix C**. Traffic volumes along Liberty New Street in the future total conditions are forecasted to be approximately 100 trips eastbound and westbound during the AM and PM peak hours respectively, between Strachan Avenue and

Atlantic Avenue. The other volumes east-west along Liberty New Street are generally between 200 trips and 300 trips per direction.

3.3.4 Exhibition GO Station Future Trip Generation

The net change in trips generated by Exhibition GO Station by the 2030 analysis horizon year was estimated by removing the existing GO Station trips and adding the forecast gross 2030 trips for walking, cycling, and automobile passenger pick-up/drop-off trips. The methodology for calculating the existing Exhibition GO Station trip generation layer was outlined in Section 3.3.1.

The future 2030 Exhibition GO Station trips were estimated based on the ingress and egress trips from the scaled-back 2080 trip transfer matrix derived from the Metrolinx EMME model, which is shown in **Appendix F**. A 1% compound annual growth rate was assumed between 2030 and 2080 for Exhibition Station related trips. Since only the AM peak hour trip transfer matrix was available, an opposite trend was assumed for the PM peak hour and the trip matrix was transposed. The analysis was conducted using the most recent iteration of the station trip forecasts provided by Metrolinx at the time of the preparation of this report.

Ingress and egress mode splits for 2030 conditions were based on:

- The trip transfer matrix for all trips transferring from other transit routes; and
- Projected 2031 mode splits for Exhibition GO Station from Metrolinx's 2016 GO Rail Station Access Plan for trips accessing and egressing the station by walking, biking and driving/carpooling.

The 2030 gross trip generation for the GO Station is summarized in **Table 3-6**.

Table 3-6: 2030 GO Station Gross Trip Generation By Access and Egress Mode

	AM Pe	ak	PM Peak	
Trip Type	Mode share*	Trips	Mode share*	Trips
Total to GO ingress trips		760		6,762
From OL to GO transfer trips	-	362	-	5,251
Total Local transit to GO transfers		118		1,041
Total walk/bike/PUDO to GO access trips	100%	281	100%	471
Walk to GO	70%	198	70%	332
TOC to GO trips		15		38
Walk to GO (excludes TOC trips)	-	183	-	294
Cycle to GO	7%	19	7%	32
PUDO to GO	23%	64	23%	107
Total GO egress trips		6,762		760
From GO to OL transfer trips	-	5,251	-	362
Total GO to Local transit transfers		1,041		118
Total GO to walk/bike/PUDO egress trips	100%	471	100%	281
Walk from GO	70%	332	70%	198
GO to TOC		29		13
Walk from GO (excludes TOC trips)		302	_	184
Cycle from GO	7%	32	7%	19

	AM Pe	ak	PM Peak	
Trip Type	Mode share*	Trips	Mode share*	Trips
PUDO from GO	23%	107	23%	64

^{*}Mode share represents access and egress mode shares other than transfers from local transit.

The future directional distribution and route choice for gross future GO station trips were derived in the following manner:

- For future PUDO trips to and from the GO station, the same directional distribution was assumed for existing PUDO trips shown in **Table 3-4**, since growth in station usage will largely be accounted for by non-auto access and egress modes.
- For biking trips, a directional distribution similar to the existing GO station (Table 3-5) was assumed. To account for additional development potential to the south of the railway tracks, the south directional share was increased by 15%, and the other directions were decreased proportionally. The final directional distribution is shown in Table 3-7.
- For all walking trips transferring from other local transit routes, as well as pure walking trips, the directional distribution was obtained directly from the 2041 Station Transfer Matrices. The directional distributions are summarized in **Table 3-8** and **Table 3-9** for local transit transfer trips and pure walking trips, respectively. The regions from which these walking trips start and end are depicted in **Figure 3-2**.

Table 3-7: Directional Distribution for Future Bike-GO Station Trips

Time Perio	d	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
	NW	4.9%	1.1%	0.9%	3.6%
	N	28.1%	1.9%	3.7%	11.2%
	NE	7.4%	14.6%	16.3%	18.0%
Local Short- Distance Trips	Е	44.5%	67.1%	61.9%	34.7%
Distance mps	SE	0.0%	0.0%	0.0%	17.5%
	S	15.0%	15.0%	15.0%	15.0%
	SW	0.0%	0.4%	0.7%	0.0%
Regional Long-	NE	0.0%	0.0%	0.9%	0.0%
Distance Trips	W	0.0%	0.0%	0.4%	0.0%
Total		100%	100%	100%	100%

^{*}Directions omitted have 0% directional share at all times of day and all directions

Table 3-8: 2041 Route Choice Distribution To and From GO Station for Local Transit Transfer Trips

Location	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
North via 29	0.0%	3.0%	3.0%	0.0%
North via 63	0.0%	5.4%	5.4%	0.0%
East via 509	14.3%	2.3%	2.3%	14.3%
East via 511	14.3%	4.1%	4.1%	14.3%
South via 29	0.0%	0.2%	0.2%	0.0%

South via 929	0.0%	0.2%	0.2%	0.0%
East via OL	71.4%	80.4%	80.4%	71.4%
West via 509	0.0%	1.3%	1.3%	0.0%
North via 929	0.0%	3.0%	3.0%	0.0%
TOTAL	100%	100%	100%	100%

^{*}Derived from 2041 Station Transfer Matrix

Table 3-9 2041 Directional Distribution for Walking Trips to and from GO Station

Location	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
North	27.7%	39.3%	39.3%	27.7%
Liberty Village	36.9%	60.7%	60.7%	36.9%
Exhibition Place	3.1%	0.0%	0.0%	3.1%
South West	22.6%	0.0%	0.0%	22.6%
South East	9.7%	0.0%	0.0%	9.7%

Figure 3-2: Regions for Station Walking Trips

3.3.5 Exhibition Ontario Line Station Trip Generation

Similar to the future GO station ridership, the Ontario Line Exhibition Station (OL Station) trips were estimated based on the ingress and egress trips from the scaled-back 2080 trip transfer matrix derived from the Metrolinx EMME model, which is shown in Appendix F. A 1% compound annual growth rate was assumed between 2030 and 2080. Since only the AM peak hour trip transfer matrix was available, an opposite trend was assumed for the PM peak hour

hdrinc.com

and the trip matrix was transposed. Ingress and egress mode splits for 2030 conditions were based on:

- The trip transfer matrix for all trips transferring from other transit routes; and
- Existing 2016 TTS data for trips boarding and alighting Exhibition GO Station for trips accessing and egressing the station by walking, biking and driving/carpooling.

The 2030 trip generation for the OL station is summarized in **Table 3-10**.

Table 3-10: 2030 OL Station Gross Trip Generation By Access and Egress Mode and by Analysis Period

Tain True	AN	1	PI	И
Trip Type	Mode share*	Trips	Mode share*	Trips
Total to OL ingress trips		7,306		2,499
From GO to OL transfer trips	-	5,251	-	362
Total Local transit to OL transfers		733		380
Total walk/bike/PUDO trips to OL access trips	100%	1,322	100%	1,756
Walk to OL	67%	883	70%	1,689
TOC to OL trips		33		33
walk to OL (excludes TOC trips)	-	851	-	1,656
Cycle to OL	26%	349	7%	14
PUDO to OL	7%	89	23%	53
Total OL egress trips		2,499		7,306
From OL to GO transfer trips	-	362	-	5,251
Total OL to Local transit transfers		380		733
Total OL to walk/bike/PUDO egress trips	100%	1,756	100%	1,322
Walk from OL	96%	1,689	70%	883
OL to TOC		26		29
Walk from OL (excludes TOC trips)	•	1,663	-	854
Cycle from OL	1%	14	7%	349
PUDO from OL	3%	53	23%	89

^{*}Mode share represents access and egress mode shares other than transfers from local transit.

The directional distribution for OL station trips were derived in the following manner:

- For PUDO trips to and from the OL station, the directional distribution was based on 2016 TTS data of all trips beginning within a 3km radius of the station and ending in East York or the east side of North York (represented by Planning Districts 5 and 6), since these regions generally follow the proposed OL alignment. Trips starting beyond 3km to the east of the OL station were discounted to minimize backtracking, since it was assumed that these trips would use other stations along OL. The resulting directional distribution is shown in Table 3-11.
- For biking trips, a directional distribution similar to that of PUDO trips to the OL station
 (Table 3-11) was assumed. To account for additional development potential to the south
 of the railway tracks, the south directional share was increased by 15%, and the other
 directions were decreased proportionally. The final directional distribution is shown in
 Table 3-12.
- For all walking trips transferring from other local transit routes, as well as pure walking trips, the directional distribution was obtained directly from the 2041 Station Transfer Matrices. The directional distributions are summarized in Table 3-13 and Table 3-14 for

local transit transfer trips and pure walking trips, respectively. The regions from which these walking trips start, and end are depicted in Figure 3-2.

Table 3-11: PUDO OL Trip Distribution

Direct	tion	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
	NW	48.1%	30.0%	29.9%	48.6%
	N	28.7%	33.9%	40.7%	29.8%
	NE	0.0%	0.0%	0.0%	0.0%
Local Trips	E	23.2%	35.4%	28.8%	19.9%
	SE	0.0%	0.7%	0.0%	0.7%
	S	0.0%	0.0%	0.0%	0.0%
	SW	0.0%	0.0%	0.6%	1.1%
	W	0.0%	0.0%	0.0%	0.0%
Tota	al	100%	100%	100%	100%

Table 3-12: Directional Distribution for Bike-OL Station Trips

Direct	tion	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
	NW	40.9%	25.5%	25.4%	41.3%
	N	24.4%	28.8%	34.6%	25.3%
	NE	0.0%	0.0%	0.0%	0.0%
Local Trips	Е	19.7%	30.1%	24.5%	16.9%
	SE	0.0%	0.6%	0.0%	0.6%
	S	15.0%	15.0%	15.0%	15.0%
	SW	0.0%	0.0%	0.5%	0.9%
	W	0.0%	0.0%	0.0%	0.0%
Tota	al	100%	100%	100%	100%

Table 3-13: 2041 Route Choice Distribution To and From OL Station for Local Transit Transfer Trips

Location	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
North via 29	0.2%	14.9%	14.9%	0.2%
North via 63	1.0%	26.9%	26.9%	1.0%
East via 509	0.0%	0.0%	0.0%	0.0%
East via 511	4.7%	20.9%	20.9%	4.7%
South via 29	0.1%	0.7%	0.7%	0.1%
South via 929	0.1%	0.7%	0.7%	0.1%
West via GO local	53.5%	14.9%	14.9%	53.5%
West via GO express	39.9%	0.0%	0.0%	39.9%
West via 509	0.3%	6.0%	6.0%	0.3%
North via 929	0.2%	14.9%	14.9%	0.2%
TOTAL	100%	100%	100%	100%

^{*}Derived from 2041 Station Transfer Matrix

hdrinc.com

Table 3-14 2041 Directional Distribution for Walking Trips To and From GO Station

Location	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
North	13.6%	9.1%	9.1%	13.6%
LV	34.5%	89.7%	89.7%	34.5%
EP	3.6%	1.2%	1.2%	3.6%
SouthW	33.7%	0.0%	0.0%	33.7%
SouthE	14.5%	0.0%	0.0%	14.5%

3.3.6 Local Bus and Streetcar Platform Trips

Aside from transfer trips to and from the OL and GO stations, it was assumed that other local trips would originate from Liberty Village and Exhibition Place. The trip generation and route choice distribution from these three areas were estimated separately as explained below.

3.3.6.1 BUS AND STREETCAR TRIPS TO/FROM LIBERTY VILLAGE

The volume of trips between Liberty Village and the bus and streetcar platforms around the OL station was estimated using the 2041 AM Transit OD matrix from the Metrolinx 2041 Greater Golden Horseshoe model. The following forecasts are estimated after scaling down the model transit-based trips to represent the 2030 AM peak hour:

- AM inbound to Liberty Village: 3,098 transit-based trips; and
- AM outbound from Liberty Village: 1,697 transit-based trips.

It was assumed that the PM inbound and outbound transit trips were the opposite of the AM inbound and outbound transit trips to and from Liberty Village, with 1697 and 3098 inbound and outbound trips, respectively.

The transit route choice was based on a directional distribution that was itself derived from the 2041 GGH AM Transit OD matrix, in conjunction with knowledge of each transit route's future convenience, such as speed and accessibility. The directional distribution is shown in **Table 3-15**, and the resulting route choice distribution to and from Liberty Village is shown in **Table 3-16**. It was assumed that the directional distribution would remain the same in the 2030 horizon.

Table 3-15: 2041 GGH Transit Trips Directional Distribution

Direct	tion	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
	NW	6.9%	11.1%	11.1%	6.9%
	N	6.0%	8.0%	8.0%	6.0%
Local Short- Distance Trips	NE	11.8%	20.2%	20.2%	11.8%
	E	11.5%	37.3%	37.3%	11.5%
	SE	0.1%	0.1%	0.1%	0.1%
	SW	0.0%	0.1%	0.1%	0.0%
	W	2.8%	0.8%	0.8%	2.8%
Regional	NW	8.6%	4.5%	4.5%	8.6%
Long- Distance	N	14.8%	5.6%	5.6%	14.8%
Trips	NE	16.9%	4.4%	4.4%	16.9%

Г	J	く

Direction		AM (IN)	AM (OUT)	PM (IN)	PM (OUT)	
	Е	7.9%	1.9%	1.9%	7.9%	
	SW	2.1%	0.7%	0.7%	2.1%	
	W	10.6%	5.3%	5.3%	10.6%	
Total		100%	100%	100%	100%	

Local S, Regional S and Regional SE were 0%.

Table 3-16: 2041 Transit Route Choice To and From Liberty Village

Direction	AM(IN)	AM(OUT)	PM(IN)	PM(OUT)
North via 29	17%	17%	17%	17%
North via 63	5%	6%	6%	5%
East via 504	11%	24%	24%	11%
East via 509	5%	4%	4%	5%
East via 511	6%	5%	5%	6%
South via 29	5%	1%	1%	5%
East via GO local	2%	1%	1%	2%
East via GO express	6%	2%	2%	6%
West via GO local	5%	2%	2%	5%
West via GO express	8%	4%	4%	8%
West via 504	6%	6%	6%	6%
East via OL	21%	26%	26%	21%
West via 509	1%	0%	0%	1%
North via 929	1%	1%	1%	1%
Total	100%	100%	100%	100%

Since passengers from Liberty Village can access each route from more than one stop, it was necessary to assume a proportion of transit trips opting to use the OL station's bus and streetcar platforms, as opposed to other stops elsewhere around Liberty Village. These percentage shares of passengers choosing to use the bus and streetcar platforms, in conjunction with the total transit trips from Liberty Village, were used to derive the final number of peak hour trips between Liberty Village and the bus and streetcar platforms, and are shown in Table 3-17.

Table 3-17: 2030 Future Total Transit Trips by Platform to/from Liberty Village

Route Gateway*	Percentage of trips using station bus and streetcar platforms for each route	Inbound Platform	Outbound Platform	AM(IN)	AM(OUT)	PM(IN)	PM(OUT)
North via 29	50%	Eastbound bus bays	Westbound bus bays	263	143	143	263
North via 63	50%	Westbound bus bays	Eastbound bus bays	78	55	55	78
East via 504	0%	Elsewhere	Elsewhere	0	0	0	0
East via 509	100%	Westbound LRT platform	Eastbound LRT platform	161	68	68	161
East via 511	100%	Eastbound LRT platform	Eastbound LRT platform	194	77	77	194
South via 29/929	50%	Westbound bus bays	Eastbound bus bays	76	10	10	76

Route Gateway*	Percentage of trips using station bus and streetcar platforms for each route	Inbound Platform	Outbound Platform	AM(IN)	AM(OUT)	PM(IN)	PM(OUT)
East via GO local	100%			53	15	15	53
East via GO express	100%		184	38	38	184	
West via GO local	100%	Within Station		145	35	35	145
West via GO express	100%			257	71	71	257
East via OL	100%			663	449	449	663
West via 504	0%	Elsewhere	Elsewhere	0	0	0	0
West via 509	100%	Eastbound LRT platform	Westbound LRT platform	39	7	7	39
North via 929	50%	Eastbound bus bays	Westbound bus bays	23	5	5	23

^{*}For the northbound and southbound travel directions, the inbound directions are represented by south and north, respectively. For eastbound and westbound travel directions, the inbound directions are represented by west and east, respectively.

3.3.6.2 BUS/STREETCAR TRIPS TO/FROM EXHIBITION PLACE

The volume of trips between Exhibition Place (EP) and the bus and streetcar platforms around the OL station was also estimated using the 2041 AM Transit OD matrix from the Metrolinx 2041 Greater Golden Horseshoe model for the AM and PM peak hours. The following transit-based trips are forecasted after scaling to represent 2030 conditions, and include only the transit trips that opt for the westbound bus bays, eastbound bus bays, and Exhibition LRT stop:

- AM inbound to Exhibition Place: 102 transit-based trips.
- AM outbound from Exhibition Place: 6 transit-based trips.

It was assumed that the PM inbound and outbound transit trips were the opposite of the AM inbound and outbound transit trips to and from Exhibition Place, with 6 and 102 inbound and outbound trips, respectively.

The final combined 2030 future background traffic volumes can be found in **Appendix C**.

Table 3-18: 2030 Future Total Transit Trips by Route to/from Exhibition Place

Route*	Inbound Platform	Outbound Platform	AM(IN)	AM(OUT)	PM(IN)	PM(OUT)
North via 29/929	Eastbound bus bay	Westbound bus bay	32	3	3	32
North via 63	Westbound bus bay	Eastbound bus bay	9	1	1	9
East via 504	Elsewhere	Elsewhere	0	0	0	0
East via 509	Westbound LRT platform	Eastbound LRT platform	20	1	1	20
East via 511	Eastbound LRT platform	N/A	24	1	1	24
South via 29	Westbound bus bay	Eastbound bus bay	9	0	0	9
West via 509	Eastbound LRT platform	Westbound LRT Platform	5	0	0	5

hdrinc.com

*For the northbound and southbound travel directions, the inbound directions are represented by south and north, respectively. For eastbound and westbound travel directions, the inbound directions are represented by west and east, respectively.

3.4 Background Traffic Operations

Table 3-19 summarizes the LOS, v/c ratio, and 95th percentile queue for movements under future background conditions based on the forecast traffic volumes shown in **Appendix C**. Signal timing splits were optimized whilst maintaining the cycle length and phasing structure. Detailed Synchro results and reports for the study area intersection are provided in **Appendix D**.

Under 2030 background traffic conditions, the addition of background traffic from general background traffic growth, GO Station growth, and new trips associated with Ontario Line has resulted in at-capacity conditions throughout the study area. These locations include new critical movements at all study intersections along King Street with the exception of King/Joe Shuster, at the intersection of Dufferin/Liberty Street, Lake Shore/Strachan, and King/Strachan. Although the Ontario Line Exhibition Station does not generate a significant number of vehicle trips, the station is expected to add a substantial number of conflicting pedestrians and bicycle volumes, with the majority of these volumes being directed to capacity-constrained locations along King Street.

The westbound approach to Dufferin/Liberty improves due to the newly available routing option for outbound traffic travelling to the southwest which is provided by Liberty New Street.

Further improvements were assessed at the intersections of Strachan/Fleet and Dufferin/Liberty New Street during the PM peak hour to identify mitigation opportunities, as summarized in **Table 3-20**. The improvements applied included:

- **Strachan/Fleet:** Add northbound left turn advanced phase and increase cycle length by 10 seconds.
- Dufferin/Liberty New Street: Increase cycle length to 80 seconds.

With the additional improvements, the intersection of Dufferin/Liberty New will operate without critical movements, and the overall intersection of Strachan/Fleet will operate within capacity. Despite the improvements at Strachan/Fleet, high delays are still expected on the eastbound left, westbound left/through, northbound left, and southbound through/right movements, with the southbound through/right operating at capacity. Mitigation measures to alleviate the remaining overcapacity movements are limited due to right-of-way constraints. Additionally, further road widening at locations such as Lakeshore/Strachan, and Strachan/Fleet may have a detrimental impact on experience for pedestrians and cyclists.

Table 3-19: 2030 Background Conditions – Summary of Traffic Analysis Results

			Al	M Peak H	our	PI	M Peak H	our
Intersection	Movement	Storage length	LOS	v/c Ratio	95th %ile Q (m)	LOS	v/c Ratio	95th %ile Q (m)
	Overall	-	F	1.28	-	D	0.95	-
King/Dufferin	EBLTR	267	F	1.36	137.4	D	0.90	85.1
(Signalized)	WBLTR	292	Е	1.09	87.6	D	0.93	124.4
(Signalized)	NBLTR	188	В	0.64	18.5	C	0.81	73.3
	SBLTR	361	F	1.29	117.2	Е	1.00	81.6
	Overall	1	В	0.74	-	Α	0.55	-
King/Joe Shuster	EBLT	292	В	0.79	34.1	Α	0.36	32.3
Way (Signalized)	WBTR	167	В	0.67	49.9	Α	0.58	62.3
	SBLR	76	С	0.58	46.3	С	0.42	29.1
	Overall	1	D	0.94	-	В	0.70	-
Vina/Atlantia	EBTR	167	D	0.96	88.5	В	0.65	47.0
King/Atlantic (Signalized)	WBLT	294	D	0.97	91.1	В	0.54	47.0
(Signalized)	NBL	30	D	0.83	76.6	C	0.64	50.6
	NBR	174	С	0.59	39.3	C	0.74	55.3
	Overall	-	С	0.88	-	В	0.54	-
IZ: /C	EBLTR	294	С	0.88	98.0	Α	0.44	43.7
King/Sudbury	WBLTR	175	С	0.84	83.3	В	0.57	59.0
(Signalized)	NBLTR	134	С	0.01	3.2	0	0	0
	SBLTR	172	D	0.86	77.7	С	0.48	33.7
	Overall	-	С	0.75	-	В	0.74	-
IC:/OI	EBLTR	175	С	0.88	79.1	В	0.47	32.7
King/Shaw	WBLTR	231	В	0.76	54.7	В	0.80	78.1
(Signalized)	NBLTR	103	С	0.48	29.5	С	0.60	34.0
	SBLTR	356	С	0.53	24.2	С	0.65	33.7
	Overall	-	D	0.97	-	С	0.77	-
Deaff and the first of	EBLTR	82.6	С	0.01	0.5	В	0.02	3.7
Dufferin/Liberty	WBLTR	82.9	D	0.75	59.7	С	0.86	104.6
(Signalized)	NBLTR	225	D	1.19	112.4	В	0.66	73.2
	SBLTR	188	Е	1.06	48.0	В	0.60	51.0
	Overall	-	Α	0.55	-	В	0.71	-
	WBL	30	D	0.17	5.9	C	0.22	16.0
Dufferin/	WBR	124	С	0.07	5.6	C	0.40	23.4
Saskatchewan	NBT	241	Α	0.43	86.8	В	0.78	184.8
(Signalized)	NBR	15	Α	0.03	6.3	Α	0.03	4.9
,	SBL	30	Α	0.34	11.0	Α	0.32	10.2
	SBT	167	Α	0.55	41.7	В	0.71	164.9
	Overall	-	В	0.59	-	С	0.87	-
5 66 1 11 11 1	WBL	15	С	0.60	43.9	В	0.51	24.6
Dufferin/Liberty	WBR	83	C	0.06	9.0	В	0.27	12.1
New (Circus III)	NBTR	167	В	0.46	121.2	C	0.97	176.6
(Signalized)	SBL	50	A	0.05	0.9	A	0.09	3.0
	SBT	50	A	0.58	56.6	В	0.77	132.6
	Overall	-	D	1.06	_	С	0.81	-
	EBLTR	231	D	0.95	94.8	В	0.50	45.3
King/Strachan	WBLTR	334	E	1.05	93.3	В	0.81	59.5
(Signalized)	NBL	25	D	0.64	37.8	D	0.80	75.4
(=1911411204)	NBTR	400	F	1.10	136.6	С	0.77	109.0
	SBL	25	D	0.41	9.1	C	0.16	8.0

			Al	/ Peak H	our	PN	M Peak H	our
Intersection	Movement	Storage length	LOS	v/c Ratio	95th %ile Q (m)	LOS	v/c Ratio	95th %ile Q (m)
	SBTR	355	С	0.50	54.4	С	0.38	56.6
	Overall	-	С	0.65	-	F	1.62	-
	EBL	25	D	0.45	41.2	D	0.66	67.5
	EBTR	119	D	0.30	47.6	D	0.18	22.1
Strachan/Fleet	WBLT	205	D	0.64	74.4	D	0.66	73.1
0 11 010 110 11 110 110 11	WBR	50	С	0.08	2.9	С	0.06	0.0
(Signalized)	NBL	30	С	0.31	30.3	F	2.36	84.5
	NBTR	181	С	0.72	166.2	С	0.76	182.0
	SBL	25	С	0.29	21.2	D	0.53	38.9
	SBTR	217	С	0.53	112.9	Е	1.04	316.4
	Overall	-	F	1.16	-	F	1.39	-
	EBL	60	F	1.31	267.9	F	1.55	298.7
	EBTR	286	F	1.26	557.7	С	0.71	178.4
Lake Shore/	WBL	60	D	0.16	7.4	С	0.13	5.5
Strachan	WBT	172	D	0.84	160.6	F	1.16	361.5
(Signalized)	NBLTR	92	Е	0.28	23.4	Е	0.18	10.5
,	SBL	140	Е	0.72	66.1	F	0.94	141.4
	SBLT	181	Е	0.74	70.2	Е	0.90	140.1
	SBR	50	С	0.18	13.9	С	0.49	66.7
	Overall	-	С	0.77	-	F	1.10	-
Lake Shore/British	EBL	15	В	0.04	3.0	D	0.03	7.2
Columbia	EBT	387	D	0.83	139.0	F	1.16	260.1
(Signalized)	WBR	80	D	0.18	0.0	Е	0.72	54.4
,	NBTR	776	С	0.83	111.7	F	1.15	409.5
	Overall	-	Α	0.31	-	Α	0.31	-
	EBL	30	Α	0.00	0.3	Α	0.00	0.3
Duiti di	EBTR	140	Α	0.32	26.4	Α	0.32	26.4
British	WBL	20	Α	0.00	0.3	Α	0.00	0.3
Columbia/Yukon	WBT	241	Α	0.24	18.3	Α	0.24	18.3
(Signalized)	WBR	20	Α	0.00	0.0	Α	0.00	0.0
	NBLTR	68	С	0.09	4.5	С	0.09	4.5
	SBLTR	97	С	0.02	0.0	С	0.02	0.0
A 41 = 10.41 = /1 - 11 = 11.41 = 1	Overall	-	С	0.44	-	В	0.39	-
Atlantic/Liberty	EBLT	63	Α	0.09	8.9	Α	0.22	20.8
New (Signalized)	WBTR	174	Α	0.17	17.6	Α	0.07	7.6
(Signalized)	SBLR	30	D	0.83	37.8	С	0.67	27.5

Note: LOS = level of service; v/c = volume to capacity ratio; Critical movements are highlighted in **red** as defined by the City's TIS Guidelines.

Table 3-20: Future Background with Improvements (PM Only)

			P	M Peak H	our
Intersection	Movement	Storage length	LOS	v/c Ratio	95th %ile Q (m)
	Overall	-	В	0.81	-
	WBL	15	D	0.61	47.3
Dufferin/Liberty	WBR	83	С	0.06	9.7
New (Signalized)	NBTR	167	В	0.85	249.9
(Signalized)	SBL	50	Α	0.08	2.8
	SBT	50	Α	0.64	116.4
	Overall	-	F	0.98	-
	EBL	25	Е	0.76	77.1
	EBTR	119	D	0.19	23.7
Strachan/Fleet	WBLT	205	Е	0.77	86.9
	WBR	50	D	0.06	0.0
(Signalized)	NBL	30	Е	0.86	62.7
	NBTR	181	С	0.70	178.5
	SBL	25	D	0.44	38.3
	SBTR	217	F	1.21	366.8

Note: LOS = level of service; v/c = volume to capacity ratio; Critical movements are highlighted in **red** as defined by the City's TIS Guidelines.

4 Proposed TOC Development

4.1 Conceptual Site Plan

The proposed development is comprised of three separate sites, as shown in **Figure 1-1**. The site statistics for both sites are reported in **Table 4-1**. The conceptual site plan as of September 2021 for Site A and Site B are shown in **Figure 4-1** to **Figure 4-2**.

Table 4-1: Site Plan Statistics (May 17, 2021)

Site	Residential Units	Retail GFA	Office GFA	Transit GFA
Site A	265	1,078 m² (11,603 ft²)	13,166 m² (141,717 ft²)	340 m² (3,659 ft²)
Site B	303	4,226 m ² (45,488 ft ²)	10,427 m ² (112,235 ft ²)	428 m ² (4,606 ft ²)
Total	568	5,304 m² (57,091 ft²)	23,593 m² (253,952 ft²)	768 m² (8,266 ft²)

Figure 4-1: Site A (1-1A Atlantic Avenue) Site Plan

Figure 4-2: Site B (2-20 Atlantic Avenue, 1 Jefferson Avenue) Site Plan

hdrinc.com

100 York Boulevard, Suite 300, Richmond Hill, ON, CA $\,$ L4B 1J8 (289) 695-4600

4.2 Total Traffic Volumes

The 2030 future total traffic volumes are comprised of 2030 future background traffic volumes and TOC site trips.

4.2.1 TOC Site Trip Generation

4.2.1.1 MODE SPLITS

The 2016 TTS was used to inform the mode split assumptions for the development using existing information for nearby uses. The mode split for the area was obtained through review of TTS (2006) Zones 85, and 88-90, which are the zones surrounding the subject site. A proposed mode split was applied to each land use to account for improved transit service and modal shifts in the future. The TTS data and the proposed mode splits are summarized in **Table 4-2**.

Table 4-2: Existing and Proposed Mode Splits (2016 Transportation Tomorrow Survey)

		Existing (TTS)				Proposed			
Mode	AM (In)	AM (Out)	PM (In)	PM (Out)	AM (In)	AM (Out)	PM (In)	PM (Out)	
Transit	36%	34%	31%	33%	40%	40%	40%	40%	
Cycle	5%	8%	8%	6%	5%	8%	8%	6%	
Auto driver	41%	30%	30%	40%	37%	24%	21%	33%	
Auto Passenger	4%	3%	5%	5%	4%	3%	5%	5%	
Taxi/Ride Hail	1%	3%	3%	3%	1%	3%	3%	3%	
Walk	13%	22%	24%	14%	13%	22%	24%	14%	
Total	100%	100%	100%	100%	100%	100%	100%	100%	

4.2.1.2 PERSON-TRIP GENERATION

Trips were generated for the proposed development using the information provided in the Institute of Transportation Engineers (ITE) Trip Generation Informational Report (10th edition). Trip generation rates for Land Use 222 (Multifamily Housing – High-Rise), Land Use 820 (Shopping Centre), and Land Use 710 (General Office Building) were used.

The land use assumes dense multi-use conditions for Land Use 222, and general urban/suburban conditions were used for the other land uses as a dense multi-use category was not available.

Table 4-3 shows the ITE trip generation rates used for each site's land use, and it includes estimated person trips per vehicle trip. The purpose of generating person trips rather than vehicle trips was to be able to assign pedestrian, cycling and transit trips to the study network. **Table 4-4** shows the resulting trip generation by mode for all four sites.

Table 4-3: ITE Trip Generation Rates and Total Person Trip Generation

	Land Use	Multifamily Housing (High Rise)	Shopping Centre	General Office Building	Total
Total	LUC#	222	820	710	-
	Total Size Proposed	830	79,415 ft ²	451,233 ft ²	
	Setting/Location	Dense Multi-Use Urban	General Urban/Suburban	Dense Multi-Use Urban	-
	Average Rate	0.21	0.94	0.83	-
	Equation	Ln(T) = 0.84 Ln(X) - 0.65	T = 0.50(X) + 151.78	T = 0.72(X) + 21.64	-
	Entering%	12%	62%	86%	-
	Exiting%	88%	38%	14%	-
AM	Person Trips per Vehicle	2.81	NA	1.47	-
	Total Person Trips (gross)*	302	54	301	656
	Total Person Trips (multi-use interaction)*	257	46	256	558
	Total Inbound Person Trips	31	28	220	279
	Total Outbound Person Trips	226	17	36	279
	Average Rate	0.19	3.81	0.87	-
	Equation	Ln(T) = 0.81 Ln(X) - 0.60	Ln(T) = 0.74 Ln(X) + 2.89	T = 0.83(X) + 7.99	-
	Entering%	70%	48%	17%	-
	Exiting%	30%	52%	83%	-
PM	Person Trips per Vehicle	2.17	1.43	1.46	-
	Total Person Trips (gross)*	203	218	319	740
	Total Person Trips (multi-use interaction)*	173	186	273	632
	Total Inbound Person Trips	121	89	46	257
	Total Outbound Person Trips	52	97	227	375

Note: The trip generation equation was used for residential and office land use, for retail land use, the total person trips were calculated using the average vehicular trip generation rate. For retail AM, it assumed there would be 1 person per vehicle. *Assumed 15% reduction in trip generation to account for internal trips between land uses.

^{*}Gross trip generation for all TOC sites is the summation of trip generation of each site calculated using the equation or average rate.

Table 4-4: Trip Generation by Mode

Peak Hour	Direction	Mode	Mode Shares	Total Person Trips
		Total	100%	279
		Transit	40%	111
		Cycle	5%	15
	Inbound	Auto driver	37%	103
		Auto passenger	4%	10
		Taxi	1%	4
AM		Walk	13%	36
Alvi		Total	100%	279
		Transit	40%	112
		Cycle	8%	22
	Outbound	Auto driver	24%	67
		Auto passenger	3%	10
		Taxi	3%	7
		Walk	22%	61
		Total	100%	257
		Transit	40%	102
		Cycle	8%	20
	Inbound	Auto driver	21%	54
		Auto passenger	5%	12
		Taxi	3%	8
PM		Walk	24%	61
I IVI		Total	100%	375
		Transit	40%	152
		Cycle	6%	22
	Outbound	Auto driver	33%	123
		Auto passenger	5%	18
		Taxi	3%	10
		Walk	14%	51

Table 4-5: Assumed Trip Distribution for Auto Mode

Location	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
North via Dufferin	11%	7%	7%	11%
North via Shaw	12%	13%	14%	15%
North via Strachan	6%	5%	6%	6%
East via King	4%	8%	8%	7%
East via Wellington	4%	10%	7%	4%
East via Lakeshore	25%	27%	25%	22%
West via Lakeshore	31%	26%	29%	26%
West via Springhurst	2%	1%	2%	3%
West via King	3%	1%	1%	3%
North via Sudbury	1%	1%	1%	2%
TOTAL	100%	100%	100%	100%

Table 4-6: Assumed Trip Distribution for Transit Mode

Location	AM(IN)	AM(OUT)	PM(IN)	PM(OUT)
North via 29	20%	9%	12%	18%
North via 63	5%	5%	6%	4%
East via 504	10%	32%	28%	11%
East via 509	6%	5%	5%	5%
East via 511	6%	5%	5%	6%
East via GO	12%	4%	5%	10%
West via GO	13%	2%	5%	15%
West via 504	7%	1%	3%	6%
East via Ontario Line	22%	36%	33%	23%
TOTAL	100%	100%	100%	100%

Table 4-7: Assumed Trip Distribution for Walk-only Mode

Location	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
North via Dufferin West	3%	0%	1%	2%
North via Dufferin East	3%	0%	1%	2%
North via Joe Shuster West	2%	0%	1%	1%
North via Joe Shuster East	2%	0%	1%	1%
North via Shaw West	2%	0%	1%	1%
North via Shaw East	2%	0%	1%	1%
North via Strachan West	8%	8%	7%	6%
North via Strachan East	8%	8%	7%	6%
East via King North	14%	21%	20%	15%
East via King South	14%	21%	20%	15%
East via Wellington North	4%	7%	7%	5%
East via Wellington South	4%	7%	7%	5%
East via Fleet North	6%	10%	10%	9%
East via Fleet South	6%	10%	10%	9%
South via Martin Goodman West side	4%	7%	7%	6%
West via Lakeshore EB South	1%	0%	0%	1%
West via Springhurst South	1%	0%	0%	1%
West via Springhurst North	1%	0%	0%	1%
West via King South	5%	1%	1%	4%
West via King North	5%	1%	1%	4%
South of Liberty between Jefferson & Atlantic	3%	0%	1%	2%
Southeast of King/Atlantic	2%	0%	1%	1%
TOTAL	100%	100%	100%	100%

Table 4-8: Assumed Trip Distribution for Bicycle Mode

Location	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
North via Dufferin	29%	2%	2%	28%
North via Joe Shuster	0%	0%	0%	0%
North via Shaw	26%	13%	20%	26%
North via Strachan	7%	0%	1%	6%

Location	AM (IN)	AM (OUT)	PM (IN)	PM (OUT)
East via King	7%	18%	18%	8%
East via Wellington	10%	27%	27%	12%
South via Martin Goodman	12%	34%	27%	12%
West via Lakeshore	0%	5%	5%	0%
West via King	10%	0%	2%	8%
TOTAL	100%	100%	100%	100%

Trips between the TOC and the combined GO and Ontario Line Exhibition Station were estimated by applying the resulting transit gateway percentages for Ontario and GO Lines, which is listed in **Table 4-10**.

Table 4-9: Trips Between OL and GO Exhibition Station and TOC Site

Time and Direction	All modes	Transit mode%	Transit trips	Choosing OL	TOC-OL Trips	Choosing GO	TOC-GO Trips
AM(IN)	274	40%	109	21%	23	24%	26
AM(OUT)	279	40%	112	26%	29	12%	14
PM(IN)	243	40%	97	26%	25	12%	12
PM(OUT)	347	40%	140	21%	30	24%	34

The total traffic volumes are shown in **Appendix C**, comprised of future background traffic and TOC site trips. Due to limited data, a conservative approach was taken in the analysis and site traffic associated with land uses within the footprint of the proposed TOC's and OL station facilities was not subtracted before adding in the new site traffic.

5 Total Traffic Conditions

5.1 Future Total Traffic Operations

5.1.1 Pedestrian Operations

The future pedestrian density level of service operations for the 2041 horizon year were analyzed in the Ontario Line Exhibition Station Site Plan Review Transportation Impact Assessment (Ontario Line Technical Advisor, May 2021) report and found that there are no critical conditions on the sidewalks, bus bays, and intersection crosswalks during the AM and PM peak hours. Deficiencies were found on the north intersection corners at the future intersection of Liberty New Street and Atlantic Avenue; however, adjacent plaza space may be used to spread intersection queues. Detailed analysis and discussion can be found in the Ontario Line Exhibition Station Site Plan Review Transportation Impact Assessment (Ontario Line Technical Advisor, May 2021) report.

5.1.2 Automobile Operations

Total traffic operations were assessed based on the future total traffic volumes shown in **Appendix C**. **Table 5-1** summarizes the future total traffic operations. Signal timing split optimization was performed to ensure realistic operations. There was no activation or deactivation of left turns, and no further geometric improvements outside of those described in **Section 3.1** and **Section 3.4**. Detailed results and reports for all study area intersections are provided in **Appendix D**.

Under future total conditions, site traffic associated with the TOC generally results in marginal increases in v/c ratios and delay. Movements that experience capacity issues under future total conditions were critical or experienced capacity issues under future background conditions. However, the Site B driveway onto Jefferson Avenue is expected to operate with high delays, primarily due to the high conflicting pedestrian volumes walking to the station headhouse. However, the driveways are expected to be well within capacity. Other movements that emerge as critical or at capacity include:

- King/Dufferin will experience exacerbated conditions during the PM peak hour, with both the eastbound and westbound approaches reaching capacity.
- Dufferin/Liberty will experience exacerbated conditions during the AM peak hour, increasing the overall intersection delay from an LOS of "D" to an LOS of "E", with the overall intersection reaching a volume to capacity ratio of 0.99.
- King/Strachan will experience exacerbated conditions during the AM peak hour, increasing the overall intersection delay from an LOS of "D" to an LOS of "E", with the eastbound approach reaching capacity.

All other critical movements highlighted in the results summary table were carried forward from the existing or future background conditions.

Table 5-1: 2030 Future Total Conditions - Summary of Synchro Results

		Al	M Peak Ho	our		PM Peak	Hour
Intersection	Movement	LOS	v/c	95th %ile	LOS	v/c	95th %ile
		LOS	Ratio	Q (m)	LUS	Ratio	Q (m)
	Overall	F	1.31	-	D	0.97	-
King/Dufferin	EBLTR	F	1.38	139.3	D	1.04	92.2
(Signalized)	WBLTR	F	1.12	89.5	D	1.00	133.0
(Signalized)	NBLTR	В	0.68	19.4	С	0.79	73.1
	SBLTR	F	1.33	121.5	Е	0.97	81.3
	Overall	В	0.75	•	Α	0.56	-
King/Joe Shuster	EBLT	В	0.80	34.1	Α	0.36	32.7
Way (Signalized)	WBTR	В	0.68	50.9	Α	0.59	63.8
	SBLR	С	0.58	46.3	С	0.42	29.1
	Overall	D	0.94	-	В	0.70	-
King/Atlantic	EBTR	D	0.98	90.6	В	0.65	47.0
(Signalized)	WBLT	D	0.97	91.1	В	0.54	47.0
(Signalized)	NBL	D	0.84	78.3	С	0.66	52.0
	NBR	С	0.59	39.5	С	0.75	57.1
	Overall	С	0.88	-	В	0.55	-
King/Sudbury	EBLTR	С	0.90	99.8	Α	0.44	44.1
(Signalized)	WBLTR	С	0.86	94.7	В	0.58	60.3
(Signalized)	NBLTR	С	0.01	3.1	Α	0.00	0.0
	SBLTR	D	0.85	76.9	С	0.49	34.0
	Overall	С	0.78	-	В	0.78	-
Ving/Show	EBLTR	С	0.88	79.6	В	0.47	33.0
King/Shaw	WBLTR	В	0.78	57.2	В	0.82	82.3
(Signalized)	NBLTR	С	0.48	29.5	С	0.60	34.2
	SBLTR	С	0.59	26.9	С	0.69	35.7
	Overall	E	0.99	-	С	0.78	-
Dufferin/Liberty	EBLTR	С	0.01	0.5	В	0.02	3.8
(Signalized)	WBLTR	D	0.76	59.7	D	0.88	107.1
(Signalized)	NBLTR	D	1.18	115.0	В	0.68	74.6
	SBLTR	Е	1.08	47.5	В	0.60	51.2
	Overall	Α	0.56	•	В	0.77	-
	WBL	D	0.17	5.9	С	0.22	16.0
Dufferin/	WBR	С	0.07	5.7	С	0.59	34.5
Saskatchewan	NBT	Α	0.46	90.6	С	0.81	188.3
(Signalized)	NBR	Α	0.03	6.2	Α	0.03	4.9
	SBL	Α	0.35	11.5	Α	0.33	10.2
	SBT	Α	0.56	43.9	В	0.73	192.8
	Overall	В	0.60	-	В	0.84	-
Dufferin/Liberty	WBL	С	0.62	46.8	D	0.66	54.2
New	WBR	С	0.09	10.6	С	0.10	12.2
(Signalized)	NBTR	В	0.49	125.8	В	0.87	254.4
(Signalized)	SBL	Α	0.11	1.9	Α	0.20	6.0
	SBT	Α	0.59	54.0	Α	0.65	116.4
	Overall	Ε	1.09	-	С	0.86	-
	EBLTR	D	1.00	101.0	В	0.55	49.3
King/Strachan	WBLTR	E	1.06	93.8	В	0.86	71.0
(Signalized)	NBL	D	0.78	48.6	D	0.85	84.2
(Olghalized)	NBTR	F	1.14	142.5	С	0.76	106.4
	SBL	D	0.41	9.4	С	0.15	7.6
	SBTR	С	0.53	57.5	С	0.37	57.3

		Al	M Peak Ho	our	PM Peak Hour			
Intersection	Movement	LOS	v/c	95th %ile	LOS	v/c	95th %ile	
			Ratio	Q (m)	LUS	Ratio	Q (m)	
	Overall	С	0.67	-	F	1.00	-	
	EBL	D	0.46	41.4	E	0.77	#78.0	
	EBTR	D	0.30	47.6	D	0.19	23.7	
Strachan/Fleet	WBLT	D	0.64	74.4	E	0.77	86.9	
(Signalized)	WBR	С	0.09	3.1	D	0.06	0.0	
(Olgitalizad)	NBL	С	0.32	30.8	Е	0.86	62.7	
	NBTR	С	0.75	176.3	С	0.71	184.5	
	SBL	С	0.31	22.0	D	0.46	39.6	
	SBTR	С	0.55	118.4	F	1.24	379.1	
	Overall	F	1.17	-	F	1.40	-	
	EBL	F	1.32	272.2	F	1.57	298.7	
	EBTR	F	1.27	566.5	С	0.71	178.4	
Lake Shore/	WBL	D	0.16	7.5	С	0.13	5.5	
Strachan	WBT	D	0.84	163.6	F	1.18	361.5	
(Signalized)	NBLTR	E	0.30	24.0	E	0.24	12.5	
	SBL	<u>E</u>	0.72	67.8	F	0.94	149.2	
	SBLT	E	0.76	73.8	E	0.91	146.7	
	SBR	C	0.18	13.9	С	0.49	66.7	
Later Ober 17 / Duitiete	<u>Overall</u>	B	0.79	2.9	F	1.11	- 7.1	
Lake Shore/British	EBL	D B	0.04		D F	0.03		
Columbia (Signalized)	EBT	D D	0.83	145.1	E	1.15	262.6	
(Signalized)	WBR NBTR	С	0.18	0.0	F	0.73 1.17	56.7	
	Overall	A	0.86 0.31	113.8	A	0.31	413.3	
	EBL	A	0.00	0.3	A	0.00	0.3	
	EBTR	A	0.32	26.4	A	0.32	26.4	
British Columbia/	WBL	A	0.00	0.3	A	0.00	0.3	
Yukon	WBT	A	0.24	18.3	A	0.24	18.3	
(Signalized)	WBR	A	0.00	0.0	A	0.00	0.0	
	NBLTR	C	0.09	4.5	C	0.09	4.5	
	SBLTR	C	0.02	0.0	Ċ	0.02	0.0	
	Overall	В	0.51	-	В	0.45	-	
Atlantic/Liberty New	EBLT	Α	0.19	12.5	Α	0.27	24.2	
(Signalized)	WBTR	Α	0.24	19.2	Α	0.12	9.4	
,	SBLR	С	0.79	44.1	В	0.68	32.0	
leffereen/Liberty	Overall	В	-	-	Α	-	-	
Jefferson/Liberty New	EBLT	В	0.38	0	Α	0.44	8.1	
(Unsignalized)	WBTR	Α	0.31	0	Α	0.21	0.0	
(Onsignalized)	SBLR	Α	0.06	0	Α	0.29	86.9	
Atlantic/Site A	Overall	С	-	-	В	-	-	
Driveway	WBLR	С	0.06	1.4	В	0.07	1.8	
(Unsignalized)	NBTR	Α	0.05	0.0	Α	0.03	0.0	
(3	SBLT	A	0.01	0.2	A	0.00	0.1	
Hanna/Liberty New (Unsignalized)	Overall	F		-	F	-	-	
	EBLT	В	0.22	6.2	A	0.21	6.0	
	WBTR	A	0.15	0.0	A	0.06	0.0	
	SBLR	F	0.18	4.7	F	0.53	16.8	
Jefferson/Site B	Overall	F	0.05	- 0.4	F	0.04	40.4	
Driveway	WBLR	F	0.35	9.4	F	0.61	19.1	
(Unsignalized)	NBTR SBLT	Α	0.10	0.0	A	0.12	0.0	
	SBLT	Α	0.00	0.0	Α	0.00	0.0	

		Al	AM Peak Hour				PM Peak Hour			
Intersection	Movement	LOS	v/c Ratio	95th %ile Q (m)	LOS	v/c Ratio	95th %ile Q (m)			
A 41 4: - /C:4 - D	Overall	С	-		С		-			
Atlantic/Site B	EBLR	D	0.23	6.6	D	0.30	9.2			
Driveway (Unsignalized)	NBLT	Α	0.03	0.7	Α	0.02	0.5			
	SBTR	Α	0.12	0.0	Α	0.11	0.0			

Note: LOS = level of service; v/c = volume to capacity ratio; Critical movements are highlighted in red.

6 Parking and Loading Assessment

This section of the report reviews the proposed parking supply and the requirements of the new City-wide Zoning By-law 569-2013, as amended (Office Consolidation) Version Date: May 1, 2020. The by-law includes specific requirements for parking (bicycle and vehicle) as well as loading.

6.1 Policy Area Designations and Parking Requirements

The current city-wide Zoning By-law 569-2013 is typically applied to new developments throughout the City. The By-law includes multiple sets of vehicle parking rates with diminishing requirements for certain areas that have better transit accessibility. The Exhibition TOC area does not fall under any Policy Area designation and would typically use the general "in all other areas of the City" requirements in the regulations; however, due to the excellent transit available along King Street and the future Ontario Line subway which will be located directly adjacent to the sites, it is assumed that in the future this area will be designated as Policy Area 1. The policy areas in the City of Toronto are illustrated in **Figure 6-1**.

For comparison, the Policy Area 1 rates and Policy Area 3 rates are summarized below. Policy Area 3 rates are generally applied adjacent to subway lines beyond Downtown Toronto; however, the proposed Exhibition site will have better accessibility to the Downtown core than areas typically classified as Policy Area 3.

Table 6-1: Policy Area 1 and Policy Area 3 Minimum Parking Requirements

Use	Policy Area 1	Policy Area 3
Dwelling Unit in an Apartment Building (Resident Requirement)	 0.3 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; 0.5 for each one-bedroom dwelling unit; 0.8 for each two-bedroom dwelling unit; and 1.0 for each three or more bedroom dwelling unit 	 0.6 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; 0.7 for each one-bedroom dwelling unit; 0.9 for each two-bedroom dwelling unit; and 1.0 for each three or more bedroom dwelling unit
Dwelling Unit in an Apartment Building (Visitor Requirement)	a minimum rate of 0.1 for each dwelling unit	a minimum rate of 0.1 for each dwelling unit
Retail Store	 minimum of 1.0 for each 100 square metres of GFA 	 minimum of 1.0 for each 100 square metres of GFA
Office	 a minimum rate of 0.35 for each 100 square metres of GFA 	a minimum rate of 1.0 for each 100 square metres of GFA

According to By-law No. 569-2013, within Bicycle Zone 1, if bicycle parking is provided in excess of the required minimums, then the minimum vehicle parking requirements can be reduced by 1 vehicle space for every 5 bicycle parking spaces provided beyond the minimum, to a maximum of 20% of the required minimum vehicle parking. The subject site is located in Bicycle Zone 1, which is defined as the area of the City bounded by the Humber River on the

west, Lawrence Avenue on the north, Victoria Park Avenue on the east and Lake Ontario on the south.

6.2 Vehicular Parking Supply

6.2.1 Site A (1-1A Atlantic Avenue)

The total proposed vehicular parking supply for Site A is 102 spaces, comprised of a mix of residential tenant parking, car-share spaces, and shared parking spaces. Two levels of belowgrade parking garage will serve residents and commercial patrons; no surface parking is proposed.

6.2.2 Site B (2-20 Atlantic Avenue, 1 Jefferson Avenue)

The total proposed vehicular parking supply for Site B is 112 spaces, comprised of resident tenant parking, residential visitor parking, car-share spaces, shared parking spaces, and transit staff parking spaces. Three levels of below-grade parking garage will serve residents and commercial patrons; no surface parking is proposed.

The parking supply for all sites is summarized in **Table 6-2**.

Table 6-2: Vehicle Parking Supply

		Vehicle Parking Space Type										
Site	Tenant	Car-Share	Visitor	Shared Parking	Transit Staff	TOTAL						
Site A	50	4	0	48	0	102						
Site B	55	5	7	39	6	112						
TOTAL	105	9	7	87	6	214						

Figure 6-1: City of Toronto Policy Areas

6.3 Vehicle Parking Requirements

Vehicle parking requirements were reviewed using By-law 569-2013 with Policy Area 1 rates; the requirements are shown in **Table 6-3**.

Table 6-3: Vehicle Parking Zoning By-law Requirements

Site	Land Use	Size (Unit or m2)	By-law No. 569-20)13 (PA1)						
Site	Land USE	Size (Unit or m2)	Rate	# Spaces Req.						
	Bachelor	4	0.3 / Unit	1						
	1-Bed	154	0.5 / Unit	77						
	2-Bed	72	0.8 / Unit	57						
A	3-Bed	35	1.0 / Unit	35						
	Visitors	265	0.1 / Unit	26						
	Retail	1,078 m ²	1.0 / 100 m2	10						
	Office	13,166 m ²	0.35 / 100 m2	46						
		252								
	Bachelor	22	0.3 / Unit	6						
	1-Bed	172	0.5 / Unit	86						
	2-Bed	52	0.8 / Unit	41						
В	3-Bed	57	1.0 / Unit	57						
В	Visitors	303	0.1 / Unit	30						
	Retail	4,226 m ²	1.0 / 100 m2	42						
	Office	10,427 m ²	0.35 / 100 m2	36						
			Subtotal	299						
	Total Required									

Based on the Policy Area 1 minimum parking requirements, a total of 551 parking spaces would be required; for comparison, a total of 790 parking spaces would be required if Policy Area 3 was used. However, considering the urban trends, downtown location and access to transit, it is neither practical nor reasonable to provide the number of parking spaces required by the prevailing Zoning By-law for the proposed development. In recent years, City Council has acknowledged this and has adopted lower standards for approval for new developments in Downtown Toronto. These actions have been bolstered by Ontario's New Five-Year Climate Change Action Plan and numerous other initiatives by the City of Toronto. There has also been a steep decline in residential parking demand and vehicle ownership in the Downtown Toronto area. There have been developments with 'zero' parking across North America, including Downtown Toronto, where transit accessibility is reasonable. The area is well served by transit, Site B will have direct internal access to the Exhibition Ontario Line station, and all sites are very close to the King and Dufferin streetcars, Exhibition GO Station, and a number of bus routes. Also, a very high transit-dependency is the fundamental characteristic of Transit Oriented Developments / Communities, as they promote reduced automobile dependency.

Recently approved parking supply ratios for condominium buildings in the downtown area included rates as low as 0.03 spaces per unit. After reviewing a few similar developments in the nearby area, it was determined that an effective parking supply rate of 0.25 spaces per unit for

resident parking and 0.10 spaces per unit for visitor parking would be a conservative estimate for a TOC development at Exhibition Station. Nearby proxy sites are summarized below in **Table 6-4** which shows several developments near the Exhibition TOC sites providing proposed parking in the range of 28% to 40% of the required parking at the sites. By comparison, the TOC sites are proposing to provide 42% of the overall parking requirement, prior to reductions.

The by-law minimum rate of 0.35 spaces per 100 m² of office space was maintained for the TOC sites as sufficient samples in the nearby area were not observed to support office space parking reductions. The developments at 25 Liberty Street and 950 King Street both proposed zero retail parking spaces due to the small sizes of the retail uses and the expectation that the businesses will primarily serve local foot traffic. Visitor parking rates of 0.1 spaces per unit were generally maintained, except at 2 Tecumseth Street which proposed a visitor parking rate of 0.06 spaces per unit. The development at 2 Tecumseth Street had also proposed adjusted resident parking rates for each unit type. The introduction of Ontario Line, the new Liberty New Street bus bays, and the proximity of the TOC sites will reduce resident, visitor, staff, and customer reliance on single occupant vehicles to reach the site and support the provision of reduced parking at the sites.

The non-residential parking requirements have been estimated through a shared-use parking scheme that is summarized in **Table 6-5**. Shared use parking enables the efficient use of parking spaces, as different uses have higher demands for parking at different times of the day. The percentage of parking demand (as a portion of the overall rate) were from the City of Toronto's Table 200.5.10.1 as recommended in the By-law 569-2013.

It is noted that ancillary retail units will be constructed on the ground-level of the sites to which destination vehicular trips are not expected, as the businesses will primarily serve local foot traffic; therefore, the number of required retail spaces has been omitted. As per the shared parking calculations, and omitting the retail spaces, it is recommended that 48 spaces are allocated to non-residential use on Site A and 39 spaces on Site B.

Table 6-4: Parking Proxy Sites

Site Study D	Reg.	Req.	arking Darking	% of	Site Characteristics			Proposed Rates			
	Study Date	Parking		Req. Proposed	Res. (DU)	Retail (m²)	Office (m ²)	Tenant	Visitor	Retail (per 100 m ²)	Office (per 100 m ²)
25 Liberty Street	Apr. 2017	302	108	36%	-	2,699	22,677	-	-	NA	NA
950 King Street	Mar. 2018	185	74	40%	217	588	-	0.24	0.1	0	-
1071 King Street	Dec. 2019	238	66	28%	230	489	ı	0.187	0.1	0	-
2 Tecumseth	May 2019	1335	379	28%	680	6,269	31,206	By Unit*	0.06	1	0.35

*Proposed by unit:

Bachelor: 0.1 per unit
1 Bedroom: 0.3 per unit
2 Bedroom: 0.5 per unit
3 Bedroom: 1.0 per unit

Table 6-5: Shared Parking Calculations

	Land	Size (Unit or m²)		By-law No. 569-2013 (PA1)						
Site	Use		Rate	# Spaces Req.	AM	PM	Eve			
	Visitors	265	0.1 / Unit	26	2 (10%)	9 (35%)	26 (100%)			
Site A	Retail	1,078	1.0 / 100m2	10	2 (20%)	10 (100%)	10 (100%)			
	Office	13,166	0.35 / 100 m2	46	46 (100%)	27 (60%)	0 (0%)			
	Subtotal			82	50	46	36			
		Maxim	um Required		50					
	Visitors	303	0.1 / Unit	30	3 (10%)	10 (35%)	30 (100%)			
	Retail	4,226	1.0 / 100m2	42	8 (20%)	42 (100%)	42 (100%)			
Site B	Office	10,427	0.35 / 100m2	36	36 (100%)	21 (60%)	0 (0%)			
		Subtotal			47	74	72			
		Maximum Required				74				

The number of shared parking spaces that can be realized with the currently proposed parking supply is summarized in **Table 6-6**, assuming that a rate of 0.25 spaces per residential unit will be provided to residential unit tenants, that the shared parking spaces will be provided for the tenants, and that no parking will be required for retail uses. As shown, the final proposed spaces will satisfy requirements for all sites. Accounting for a further reduction based on the surplus bicycle parking on each site (calculation detailed below in Section 6.5), a surplus of 15 to 19 parking spaces is provided at the sites. The surplus parking has been assigned to visitor parking to help separate the uses and provide a more reliable source of parking for residential visitors to the sites

Table 6-6: Proposed Parking Reassignment

Parking Assignment	Site A	Site B
Total Parking Proposed	102	112
Residential Units	265	303
Base Tenant Spaces Required (based on proposed 0.25 spaces/unit)	66	75
Car-Share Spaces	4	5
Total Tenant Spaces Required	54	60
Proposed Parking Remaining	48	52
Required Shared Parking (Excluding Retail)	48	39
Difference:	0	+13
Vehicle Parking Reduction from Providing Surplus Bicycle Parking	+15	+4
Final Parking Difference:	+15	+19

6.4 Accessible Parking Spaces

Accessible parking requirements were reviewed using By-law 569-2013, Chapter 200.15.10, which stipulates the following:

(1) Parking Rates - Accessible Parking Spaces

If the total **parking space** requirement is 5 or more, clearly identified off-**street** accessible **parking spaces** must be provided on the same **lot** as every **building** or **structure** erected or enlarged, as follows:

- (A) if the number of required parking spaces is less than 13, a minimum of 1 parking space must comply with all regulations for an accessible parking space in Section 200.15;
- (B) if the number of required parking spaces is 13 to 100, a minimum of 1 parking space for every 25 parking spaces or part thereof must comply with all regulations for an accessible parking space in Section 200.15; and
- (C) if the number of required **parking spaces** is more than 100, a minimum of 5 **parking spaces** plus 1 **parking space** for every 50 **parking spaces** or part thereof in excess of 100 **parking spaces**, must comply with all regulations for an accessible **parking space** in Section 200.15. [By-law: 579-2017]

With the parking requirements summarized in **Table 6-6**, all site requirements fall within 100 to 150 parking spaces, which will result in a requirement of 5 accessible parking spaces per site. At a minimum, 5 accessible parking spaces will be provided per site.

6.5 Bicycle Parking Supply

Bicycle parking for the site will be provided in the form of short-term and long-term bicycle parking spaces. Short-term bicycle parking will be provided at-grade (internally or weather protected if outdoors) as well as underground, and will serve residential visitors, commercial patrons, and potentially residents who are making short stops at home. Long-term bicycle parking will be located on the underground parking levels under each building. The bicycle parking supply is summarized in **Table 6-7**.

Table 6-7: Bicycle Parking Supply

		Bicycle Parking Space Type									
Area	Residential Long Term	Residential Short Term	Non-Residential Long Term	Non-Residential Short Term	Transit	Total					
Site A	289	48	34	38	0	409					
Site B	285	34	30	49	82	480					

6.6 Bicycle Parking Requirements

Bicycle parking requirements were reviewed for By-law 569-2013. Based on the requirements summarized in **Table 6-8**, overall, there will be a surplus in bicycle parking indicating the opportunity to off-set the vehicular parking demand.

Site A will have a total surplus of 76 bicycle parking spaces, while Site B will have 24 surplus bicycle parking spaces. With the bicycle surplus offset in By-law 569-2013 which stipulates that vehicular parking can be reduced by surplus bicycle parking at a rate of 1 vehicle spaces per 5 bicycle spaces, up to a limit of 20% parking reduction, Site A could be reduced by 15 vehicle parking spaces and Site B by 4 spaces, which would result in all sites satisfying the required parking supply following the reassignment of spaces.

Table 6-8: Bicycle Parking Zoning By-law Requirements

		11		By-law No	. 569-2013	
Land Use		Unit or per 100 m2	Long	g-Term	Short-Term	
		1001112	Rate	# Required	Rate	# Required
Site A	Residential	265	0.9	239	0.1	27
Site A	Retail	1,078	0.2	3	3+0.3(x)	7

		lleit or nor	By-law No. 569-2013							
	Land Use	Unit or per 100 m2	Lon	g-Term	Short-Term					
			Rate	# Required	Rate	# Required				
	Office	13,166	0.2	27	3+0.2(x)	30				
	Total Req	uired	-	269	64					
	Propos	ed	-	323	-	86				
	Surplus / [Deficit	-	+54	1	+22				
	Residential	303	0.9	273	0.1	31				
	Retail	4,226	0.2	9	3+0.3(x)	16				
Site B	Office	10,427	0.2	21	3+0.2(x)	24				
Site B	Total Req	uired	-	303	-	71				
	Propos	ed	-	315	1	83				
	Surplus / [Deficit	-	+12	-	+12				

6.7 Loading Space Requirements

Loading space requirements of Zoning By-law 569-2013 were also reviewed for the proposed sites. The loading space requirements as per the By-law, and loading spaces provided, are shown in **Table 6-9** below. It is noted that the shared loading space calculations are used from Zoning By-law 569-2013, which stipulates that the Type "B" and Type "C" loading spaces can be shared between retail and office uses and that the highest requirement for each use is used as the overall requirement for the shared loading.

Table 6-9: Loading Spaces Required Based on By-Law Rates

Site	Land Use Type	Units or m ²	Loading Space Required and Provided					
	Residential	265	1 Type "G"					
	Retail	1,078	1 Type "B"					
Α	Office	13,166	2 Type "B" and 2 Type "C"					
	Total Req. (Sha	ared Loading)	2 Type "B", 2 Type "C", and 1 Type "G"					
	То	tal Proposed	3 Type "B", 2 Type "C", and 2 Type "G"					
	Residential	303	1 Type "G"					
	Retail	4,226	2 Type "B"					
В	Office	10,427	2 Type "B" and 2 Type "C"					
	Total Req. (Sha	ared Loading)	2 Type "B", 2 Type "C", and 1 Type "G"					
	То	tal Proposed	2 Type "B", 2 Type "C", and 1 Type "G"					

The dimensions of the proposed loadings spaces meet the By-law requirements, with the dimensions of each type listed below.

Type "G"

Minimum Length: 13.0 metres
Minimum Width: 4.0 metres
Minimum Clearance: 6.1 metres

Type "B"

Minimum Length: 11.0 metres
Minimum Width: 3.5 metres
Minimum Clearance: 4.0 metres

Type "C"

Minimum Length: 6.0 metres
Minimum Width: 3.5 metres
Minimum Clearance: 3.0 metres

6.8 Loading Swept Path Analysis

The loading areas were tested throughout the development process of the TOC site designs using AutoTURN software (within AutoCAD) to check the loading space accessibility for anticipated design vehicles entering the sites. The largest commercial vehicle anticipated to enter the site is a Medium Single-Unit Truck ('MSU') style delivery or moving vehicle. For garbage trucks, a City of Toronto front-loading garbage truck was tested. The swept path analysis for all sites is shown in **Appendix G**. As shown, all sites have sufficient space to accommodate movements inbound/outbound for all design vehicles. Some movements at Site A will have slightly constrained widths, at which garbage trucks and medium sized trucks entering and exiting the Type "G" and Type "B" loading spaces may need to make a three-point turn to complete the movement. It is also noted that staging areas are not provided at the Type "G" and Type "B" loading docks in the east building on Site A; staging areas should be provided to avoid having the trucks extend beyond the building envelope and obstruct traffic on the site driveway.

7 Transportation Demand Management

Transportation Demand Management (TDM) measures are methods employed to reduce the traffic impacts of a development through the reduction of Single-Occupant Vehicle (SOV) trips as well as the encouragement of more sustainable forms of travel and more efficient use of the transportation network for all modes of travel.

TDM measures can be 'hard measures', such as infrastructure like bicycle parking, or can be 'soft measures' such as policies that allow for working-from-home or flex hours. TDM measures must also be tied to the surrounding transportation network context of the development. For example, bicycle parking will be ineffective if there is no surrounding bicycle infrastructure like bicycle lanes, multi-use paths, or a lack of bicycle parking at the ultimate destination. For this reason, successful TDM implementation requires a united effort and coordination between the City and developers.

Hard measures are physically infrastructure improvements that encourage alternative modes of travel and mode shifts away from single-occupant vehicles. This can include the provision of bicycle parking or enhanced pedestrian and cyclist facilities on-site including shower and change facilities for employment uses.

Soft measures are programs or policies, such as unbundling or condo units to parking spaces, work-from-home policies, transit subsidies, etc. In many cases, hard and soft measures work together and provide mutual benefit. For instance, transit pass subsidies are soft measures, but when paired with hard measures like improved waiting areas, can have a greater impact on mode choice.

The Toronto Green Standard (Version 3) requires measures that will support a 15% or greater reduction in single occupancy vehicle (SOV) trips.

For the subject site, the general context of the area as a downtown city centre-core, mixed-use environment with excellent transit access and future direct transit access to the Ontario Line, will have an impact on the potential TDM measures. In fact, the inherent nature of the area and the presence of the Ontario Line, GO Transit, and streetcar surface transit routes throughout the study area will make this location an excellent candidate to benefit from TDM initiatives.

The mixed-use nature of downtown allows for synergy and mixed-use interactions between the proposed residential towers, as well as the ancillary retail at the ground floor, and the surrounding retail-commercial and services that are in the area. Additionally, due to the location near the City's central business district, there is an expectation that many of the residents will work within the general area and will not rely on transit to make their daily trips. Rather, these residents will walk or cycle. The mixed-use, and walkable nature of the area will in itself help to reduce vehicle trips by encouraging walking and linked trips.

Since the ancillary retail will primarily serve the surrounding area and the residential condos above, the TDM plan will be geared towards adapting the residential component.

7.1 Local and Regional Transit Accessibility

As already discussed, there is excellent transit coverage within the vicinity of the site even without the construction of Ontario Line. TTC surface transit is provided in the form of streetcars along Fleet Street (in separated right-of-way and dedicated signals at intersections) and King Street (in mixed traffic). Additionally, these streetcar routes provide direct access to the Toronto subway system along Line 1 (easterly to Union Station or St Andrew Station).

The study area already has a fairly high non-vehicle modal split at over 60% non-auto drive and this is expected to increase in general due to the increase in transit availability. The site itself will further benefit and leverage this proximity and access.

7.2 Transit Pass Subsidies

Residents and tenants of the buildings will be given transit pass subsidies that will further encourage the use of transit as a primary mode and will attract those who wish to rely on transit and will utilize the transit passes. The subsidies can be provided in the form of reduced cost passes or can be provided in the form of subsidies to residents.

7.3 Real-Time Transit Information

Real-time transit service updates will be provided in the lobby area of each residential tower. The real-time displays will include arrival time for the nearest transit stops for each of the primary transit services expected to serve the development (as outlined in **Section 2.4** and **Section 3.2**). The real-time displays will allow residents to time leaving their buildings to reduce the amount of time standing at each transit stop, thus making transit more attractive.

7.4 Pedestrian and Cycling Connections

All four buildings will be directly fronting Liberty New Street. Internally, the residential component of one of the condo towers will have access to the transit station lobby area, and there will be no need for residents of Site B to leave the building if they are destined to Ontario Line or GO routes.

There will be a multi-use path along the south side of Liberty New Street.

Bicycles are also allowed on the TTC streetcars and subways outside of peak periods, and at all times on TTC buses. Residents will be able to bring their bicycles on streetcars and use them to complete the last leg of their trips, if it is conducive to their needs.

7.5 Bicycle Parking

The building will be equipped with long-term bicycle parking that will be available to all residents. Long-term bicycle parking ensures that residents are encouraged to own bicycles in the first place by providing them with easily accessible, secure and sheltered bicycle parking. Short-term bicycle parking will be provided for visitors. Long-term bicycle parking is typically provided on P1 parking and only provided on lower parking levels if the bicycle parking takes up more than 50% of the P1 parking level.

The short-term bicycle parking will be placed in safe, well lit, accessible areas at ground level. This will encourage visitors to feel cycling is a viable option. It is noted that only excess bicycle parking beyond the by-law required bicycle parking spaces are considered to be on-site TDM measures.

Bikeshare is also available within the general area. There are 5 bikeshare stations within 400 metres walking distance. These will also be available for use by residents and visitors if they use the bikeshare services. Bikeshare spaces are considered usable if they are occupied or empty, as they can be used by residents or visitors when leaving the site (bicycle is available) or when returning (there is a free "dock").

7.6 Car-Share Services

Car-share services are an effective way to reduce auto dependency and parking needs for both residential and non-residential developments, by providing vehicles that can be used by residents and tenants on an as-needed basis. The result is that the development will attract those who do not own vehicles and typically rely on alternative forms of transportation, thus reducing the number of parking spaces required on site and attracting residents and tenants that will generally produce fewer vehicle trips, but will still occasionally require a vehicle.

For some development proposals, the City of Toronto has accepted proposals that suggest that for each car-share parking space provided on site, the development will be able to reduce the parking supply by 3 parking spaces. This is another example of the City accepting TDM measures to reduce the parking supply.

7.7 Summary of Transportation Demand Management

The following summarizes the measures that will support a reduction in single occupancy vehicle (SOV) trips:

- Direct access to Ontario Line and GO from within one of the buildings;
- Transit passes or subsidies provided to all residents of the buildings, including the commercial-retail components
- Proximity to surface transit routes along Liberty New Street, Dufferin Street, King Street, Manitoba Drive, Fleet Street, and others;
- Real-time transit information;
- Location near a mixed-use city centre core environment to promote walking trips; and
- Proximity to carshare services.

8 Preliminary Findings and Next Steps

8.1 Existing Network

A multi-modal network analysis was completed along key routes near the TOC sites for walking, cycling, and transit modes based on the City of Ottawa's Multi-Modal Level of Service methodology. Automobile operational conditions were analyzed using Synchro based on the requirements from the City of Toronto Guidelines for the Preparation of Transportation Impact Studies (2013). Identified opportunities and constraints included:

Pedestrian Level of Service

- No Sidewalks: Several of the north-south connections in Liberty Village do not currently
 have sidewalks available and instead accommodate parking for vehicles along these
 stretches. As Liberty Village continues to develop, it will be important that these
 pedestrian connectivity gaps be filled to ensure that pedestrians can move safely around
 the area, especially as demand grows to and from the future Liberty New Street and
 Ontario Line station. Pedestrian gaps are also noted throughout the Exhibition Place
 area.
- Narrow Effective Sidewalk Width: The north side of Liberty Street between Mowat Avenue and Atlantic Avenue has several locations with constrained sidewalks due to utility poles, fire hydrants, and garbage bins being placed on the sidewalk, resulting in effective sidewalk widths of less than or equal to 1.5 metres. These locations make it difficult for pedestrians to pass by each other and do not easily accommodate mobility impaired users on the sidewalk. Similarly, obstructed sections of sidewalk were observed on the east side of Fraser Avenue (south of Liberty Street), south side of King Street (between Dufferin Street and Joe Shuster Way, and the east side of Hanna Avenue (north of Liberty Street). A narrow sidewalk width of 1.5 metres is observed on Liberty Street on the north side between Hanna Avenue and Pirandello Street, and the south side between Lynn Williams Street and Pirandello Street.
- Dufferin Street / Saskatchewan Road: The intersection operates at a LOS of F for
 pedestrians due to the poor crossing conditions on the east leg of the intersection. The
 east leg has a wide crossing distance of approximately 22 metres and conflicts with a
 slightly channelized right turn lane which results in an increased approaching speed of
 vehicles. Pedestrian comfort and safety at the intersection would improve by reducing
 the sidewalk corner curb radii on the east side of the intersection and bringing the
 westbound right turn lane to a 90-degree intercept angle.

Bicycle Level of Service

 Using the Ottawa MMLOS methodology, many of the smaller roadways within the Liberty Village community operate at a BLOS of A, despite the absence of separated bicycle facilities. Bicycles would be expected to experience higher degrees of safety and comfort on the slow and narrow roadways, however, it is a limitation of the methodology that onstreet parking obstructions and traffic demand are not considered for mixed traffic

facilities, as these would also affect the cycling experience by increasing friction and conflict with automobiles.

Transit Level of Service

• As shown in the transit LOS figure (Figure 2-9), the segments with transit routes generally operate at a LOS of "D" in the walkshed area with the exception of the segment of Liberty Street between Atlantic Avenue and Hanna Avenue, and along Dufferin Street between King Street and Springhurst Avenue. The LOS E segment along Liberty Street experiences a higher level of friction than others in the area due to a large parking lot on the southern side of Liberty Street. The parking lot is expected to primarily accommodate commuter trips which will increase friction and lower the speed of transit vehicles on the segment during the peak hours. A higher transit friction is experienced along Dufferin Street due to a relatively high number of driveways and on-street parking along the segments.

Automobile Level of Service

- Capacity issues currently exist at King and Dufferin, as well as at Dufferin and Liberty.
 Capacity issues at Dufferin and Liberty are caused by high traffic demand to and from the south turning into and out of Liberty Village from Dufferin Street.
- The northbound left movement at Strachan and Fleet operates at capacity during the PM peak hour.
- The eastbound through/right movement at Lake Shore and Strachan operates near capacity during the AM peak hour. During the PM peak hour, the eastbound left and westbound through movements will operate at capacity.
- The northbound approach to Lake Shore and British Columbia operates near capacity during the AM peak hour, and the eastbound approach operates at capacity during the PM peak hour.

8.2 Proposed Development

The proposed Transit Oriented Community developments around Exhibition Station will comprise of two separate sites:

- Site A: 1-1A Atlantic Avenue
 - Consisting of 265 residential units, 1,078 m² of retail space, and 13,166 m² of office space.
 - The first floor will provide access to the eastern tunnel at Exhibition Station, which
 provides a through connection between Liberty Village and Exhibition Place, and
 emergency egress from the station.
- Site B: 2-20 Atlantic Avenue and 1 Jefferson Avenue
 - Consisting of 303 residential units, 4,226 m² of retail space, and 10,427 m² of office space.
 - The first floor will provide access to an underground concourse for Exhibition Station, which will connect to the Ontario Line and GO Station platforms.

Transit Oriented Community Traffic Forecasts

The Ontario Line Exhibition Station is forecasted to add 9,661 walking, cycling, and transit trips to the surrounding area during the AM and PM peak hours. The proposed developments, Site A and Site B, will add a combined total of 656 and 740 total trips for all modes during the AM and PM peak hours, respectively, with a significant portion of these trips being pedestrian and surface transit trips destined to / from the Station. The TOC's contribution to total traffic volumes for pedestrian and automobile trips at the study area intersections is presented in **Table 8-1**.

The TOC will contribute less than 5% to total vehicle traffic volumes at the study area intersections under 2030 total traffic conditions. Comparatively, the TOC will generate many more active transportation trips as a proportion of the total intersection volume which includes pedestrians on the crosswalks and cyclists riding within the curb lane. Up to 4.1% of total pedestrian traffic will be TOC related.

Table 8-1: Exhibition TOC Transportation Contribution to Study Area Intersections

Period	Pedestrian Volumes	Traffic Volume			
AM Peak Hour	3.3%	2.7%			
PM Peak Hour	4.1%	2.5%			

8.3 Future Capacity and Operations

2030 Future Background Conditions

Under 2030 background traffic conditions, the addition of background traffic from general background traffic growth, GO Station growth, and new trips associated with Ontario Line has resulted in at-capacity conditions throughout the study area. These locations include new critical movements at all study intersections along King Street with the exception of King/Joe Shuster, at the intersection of Dufferin/Liberty Street, Lake Shore/Strachan, and King/Strachan. Although the Ontario Line Exhibition Station will not generate a significant number of vehicle trips, the station is expected to add a substantial number of conflicting pedestrians and bicycle volumes, with the majority of these volumes being directed to capacity-constrained locations along King Street.

Further improvements were assessed at the intersections of Strachan/Fleet and Dufferin/Liberty during the PM peak hour to identify mitigation opportunities, as summarized in **Table 3-20**. The improvements applied included:

- Strachan/Fleet: Add northbound left turn advanced phase and increase cycle length by 10 seconds.
- **Dufferin/Liberty New Street:** Increase cycle length to 80 seconds.

With the additional improvements, the intersection of Dufferin/Liberty New will operate without critical movements, and the overall intersection of Strachan/Fleet will operate within capacity. Despite the improvements at Strachan/Fleet, high delays are still expected on the eastbound

left, westbound left/through, northbound left, and southbound through/right movements, with the southbound through/right operating at capacity.

2030 Future Total Conditions

The addition of TOC and Station traffic triggers a small number of turning movements at Dufferin/King, Dufferin/Liberty, King/Strachan, and the new intersection at Jefferson Avenue/Site B Driveway to operate with capacity issues. Signal timing optimizations have been applied to the future total scenario, and limited options are available to further mitigate the constraints at these locations due to right-of-way constraints.

8.4 Parking

The vehicular parking requirements based on By-law 569-2013 Policy Area 1 rates are 252 (Site A) and 299 (Site B) without any reductions applied. However, due to the location and nature of the site, a total of 102 (Site A) and 112 (Site B) parking spaces are provided, consistent with reductions applied to nearby developments. The proposed parking on all sites will satisfy the targeted residential tenant parking rate of 0.25 spaces per unit, and the City of Toronto by-law requirement for shared spaces between residential visitor and office uses. Including a reduction for surplus bicycle parking on site, a surplus vehicular parking of 15 to 19 spaces will be provided to the TOC sites. The minimum accessible parking space requirement of 5 spaces per site will be satisfied.

8.5 Loading

Application of Zoning By-laws 569-2013 requires various Type 'G', Type 'B', and Type 'C' loading spaces on all sites. Loading sites provided satisfy all of the requirements.

All sites will have sufficient space to accommodate movements inbound/outbound for all design vehicles. Some movements inbound/outbound from the Type "G" and Type "B" spaces at Site A will have slightly constrained widths, which garbage trucks and medium sized trucks may need to make a three-point turn to complete the movement.

It is noted that staging areas are not provided at the Type "G" and Type "B" loading docks in the east building on Site A; staging areas should be provided to avoid having the trucks extend beyond the building envelope and obstruct traffic on the site driveway.

8.6 Mitigation Measures

The following mitigation measures are recommended to help support the future Exhibition Station Transit Oriented Community sites into the 2030 future horizon:

- Improvements within Liberty Village to fill sidewalk gaps, increase effective sidewalk
 widths at constrained locations, and enhance the visibility of faded crosswalks should be
 considered by the City for implementation.
- Optimize intersection cycle lengths and splits in the future to ensure that changes in travel patterns are accounted for.

- **Strachan/Fleet:** Add northbound left turn advanced phase and increase cycle length by 10 seconds to mitigate future background deficiencies.
- **Dufferin/Liberty New Street:** Increase cycle length to 80 seconds to mitigate future background deficiencies.
- Provide staging areas at the east building loading docks at Site A to prevent parked trucks from extending beyond the building envelope and obstructing driveway traffic.

Appendix A: Multi-Modal Level of Service Analysis

	INTERSECTIONS	Dufferin / King			King / Joe Shuster				King / Atlantic				
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Lanes	4	4	4	4	3		4	4		3	4	4
	Median	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 r			
	Conflicting Left Turns	Permissive	Permissive	Permissive	Protected/ Permissive	No left turn / Prohib.		Permissive	No left turn / Prohib.		No left turn / Prohib.	No left turn / Prohib.	Permissive
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control		No right turn	Permissive or yield control		Permissive or yield control	Permissive or yield control	No right turn
	Right Turns on Red (RToR)?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed	RTOR allowed		RTOR allowed	RTOR allowed	RTOR allowed
	Ped Signal Leading Interval?	No	No	No	No	No		No	No		No	No	No
an	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Channel		No Channel	No Channel		No Channel	No Channel	No Channel
str	Corner Radius	3-5m	3-5m	5-10m	0-3m	5-10m		0-3m	5-10m		5-10m	5-10m	0-3m
Pedestrian	Crosswalk Type	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Std transverse markings		Std transverse markings	Std transverse markings		Std transverse markings	Std transverse markings	Std transverse markings
_	PETSI Score	58	58	57	59	79		61	62		79	62	61
	Ped. Exposure to Traffic LoS	D	D	D	D	В	-	С	С	-	В	С	С
	Cycle Length	90	90	90	90	80		80	80		70	70	70
	Effective Walk Time	34	34	19	8	37		8	8		22	8	8
	Average Pedestrian Delay	17	17	28	37	12		32	32		16	27	27
	Pedestrian Delay LoS	В	В	С	D	В		D	D	-	В	С	С
		D	D	D	D	В		D	D		В	С	С
	Level of Service	D					D			(С		
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic	Mixed Traffic		Mixed Traffic	Mixed Traffic	Mixed Traffic
	IF Dedicated Right Turn Lane, THEN Right Turn Configuration, ELSE <blank></blank>												
	Dedicated Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h	≤ 25 km/h		≤ 25 km/h	≤ 25 km/h	≤ 25 km/h
<u>o</u>	Cyclist Through Movement						-			-			
Š	Separated or Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	Mixed Traffic	Mixed Traffic
Bicycle	Left Turn Approach	≥ 2 lanes crossed	One lane crossed		No lane crossed	≥ 2 lanes crossed		≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed			
	Operating Speed	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h		≤ 40 km/h	≤ 40 km/h		≤ 40 km/h	≤ 40 km/h	≤ 40 km/h
	Left Turning Cyclist	D	D	D	D	В		В	D	-	D	D	В
		D	D	D	D	В	-	В	D	-	D	D	В
	Level of Service	D					D			1	D		
Transit	Average Signal Delay												
		-	•	•	•	-	-	-	-		•	•	-
	Level of Service			-				-				-	
¥	Effective Corner Radius												
	Number of Receiving Lanes on Departure												
Truck	from Intersection												

Figure A-1: MMLOS Parameters – Intersections

	INTERSECTIONS		King / S	Sudbury			Dufferin / Sa	askatchewan			Duffe rin	/ Liberty	
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WES
	Lanes	4	0 - 2	4	4	4	5	7		4	4	3	
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m					
	Conflicting Left Turns	No left turn / Prohib.	No left turn / Prohib.	Permissive	Permissive	No left turn / Prohib.	Permissive	Protected/ Permissive		No left turn / Prohib.	Permissive	Permissive	
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Protected/ Permissive	No right turn	Permissive or yield control		Permissive or yield control	Permissive or yield control	Permissive or yield control	
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed	RTOR allowed	RTOR allowed					
	Ped Signal Leading Interval?	No	No	No	No	No	No	No		No	No	No	
ä	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	Convtl without Receiving Lane		No Channel	No Channel	No Channel	
str	Corner Radius	5-10m	5-10m	3-5m	5-10m	10-15m	0-3m	10-15m		5-10m	0-3m	5-10m	
Pedestrian	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings		Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	Zebra stripe hi-vis markings	
-	PETSI Score	62	94	55	54	64	48	11		65	59	74	
	Ped. Exposure to Traffic LoS	С	Α	D	D	С	D	F	-	С	D	С	
	Cycle Length	80	80	80	80	80	80	80		80	80	80	
	Effective Walk Time	30	30	8	8	10	10	13		24	24	23	
	Average Pedestrian Delay	16	16	32	32	31	31	28		20	20	20	
	Pedestrian Delay LoS	В	В	D	D	D	D	С	-	С	С	С	
		С	В	D	D	D	D	F		С	D	С	
	Level of Service			D				F				D	
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WE
						Curb Bike Lane,			WE31				,,,
	Bicycle Lane Arrangement on Approach IF Dedicated Right Turn Lane,	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Cycletrack or MUP	Mixed Traffic	Mixed Traffic		Mixed Traffic	Mixed Traffic	Mixed Traffic	
	THEN Right Turn Configuration, ELSE Stank>					Not Applicable	≤ 50 m	≤ 50 m					
	Dedicated Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h	≤ 25 km/h	≤ 25 km/h					
Φ	Cyclist Through Movement					Not Applicable	D	D	-				
핓	Separated or Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Separated	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	Mixed Traffic	Mixed Traffic	
Bicycle	Left Turn Approach	One lane crossed	One lane crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	1 lane crossed		≥ 2 lanes crossed		≥ 2 lanes crossed		One lane crossed	
	Operating Speed	≤ 40 km/h		≤ 40 km/h		≤ 40 km/h		≤ 40 km/h					
	Left Turning Cyclist	В	В	D	D	В	-	D	-	D	-	В	
		В	В	D	D	В	-	D		D	-	В	
	Level of Service			D				D				D	
+	Average Signal Delay												
nsi		-	-	-	-	-	-	-	-	-	-	-	
Transit	Level of Service			-				-				-	
	Effective Corner Radius												
Truck	Number of Receiving Lanes on Departure from Intersection												
2						_	-	-		-			
	Level of Service												

Figure A-2: MMLOS Parameters - Intersections

			King	King	King	Liberty	Dufferin	Dufferin	Dufferin	Mowat	Mowat	Fraser	Fraser	Jefferson	Jefferson						
SEGMENTS	5	Street A	Dufferin-Joe Shuster	Joe Shuster- Atlantic	Atlantic-Sudbury	Dufferin-Mowat	Mowat-Fraser	Fraser- Jefferson	Jefferson- Atlantic	Atlantic-Hanna	Hanna-Lynn Williams	Lynn Williams- Piranello	King-Liberty	Liberty- Springhurst	Springhurst- Saskatchewan	King-Liberty	Liberty-South	King-Liberty	Liberty-South	King-Liberty	Liberty-South
	Sidewalk Width Boulevard Width		≥ 2 m < 0.5	≥ 2 m < 0.5	≥ 2 m < 0.5	no sidewalk n/a	< 1.5 m n/a	1.5 m < 0.5 m	< 1.5 m n/a	≥ 2 m < 0.5	1.5 m 0.5 - 2 m	1.5 m 0.5 - 2 m	≥ 2 m 0.5 - 2 m	≥ 2 m 0.5 - 2 m	≥ 2 m < 0.5	1.5 m < 0.5 m	no sidewalk n/a	1.5 m < 0.5 m	< 1.5 m n/a	1.5 m 0.5 - 2 m	no sidewalk n/a
1	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000
strian	Operating Speed On-Street Parking		> 30 to 50 km/h no	> 30 to 50 km/h yes	> 30 to 50 km/h yes	> 30 to 50 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h yes	≤ 30 km/h yes	≤ 30 km/h yes	≤ 30 km/h no									
st	Exposure to Traffic PLoS	F	С	С	С	F	F	E	F	С	E	E	В	В	С	D	С	D	F	С	С
Pede	Effective Sidewalk Width		2.0 m	2.0 m	2.0 m		1.2 m	1.5 m	1.2 m	1.2 m	1.5 m	1.5 m	2.0 m	2.0 m	2.0 m	1.5 m		1.5 m	1.2 m	1.5 m	
<u> </u>	Pedestrian Volume		500 ped /hr	250 ped/hr	500 ped /hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr								
1	Crowding PLoS		В	В	В	-	В	В	В	В	В	В	В	В	В	В	-	В	В	В	-
	Level of Service		С	С	С	-	F	E	F	С	E	E	В	В	С	D	-	D	F	С	-
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic												
	Number of Travel Lanes		4-5 lanes total	4-5 lanes total	4-5 lanes total	≤ 2 (no centreline)	4-5 lanes total	4-5 lanes total	2-3 lanes total	≤ 2 (no centreline)											
1	Operating Speed	1	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h												
	# of Lanes & Operating Speed LoS		D	D	D	Α	Α	Α	Α	Α	A	Α	D	D	В	A	Α	Α	Α	Α	A
Bicycle	Bike Lane (+ Parking Lane) Width																				
- Š	Bike Lane Width LoS	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
面	Bike Lane Blockages																				
1	Blockage LoS Median Refuge Width (no median = < 1.8 m)																			-	
1	No. of Lanes at Unsignalized Crossing		< 1.8 m refuge 4-5 lanes	< 1.8 m refuge 4-5 lanes	< 1.8 m refuge 4-5 lanes	< 1.8 m refuge ≤ 3 lanes	< 1.8 m refuge 4-5 lanes	< 1.8 m refuge 4-5 lanes	< 1.8 m refuge 4-5 lanes	< 1.8 m refuge ≤ 3 lanes	< 1.8 m refuge ≤ 3 lanes	< 1.8 m refuge ≤ 3 lanes	< 1.8 m refuge ≤ 3 lanes	< 1.8 m refuge ≤ 3 lanes	< 1.8 m refuge ≤ 3 lanes						
1	Sidestreet Operating Speed		4-5 lailes ≤ 40 km/h	≤ 40 km/h	4-5 lanes ≤ 40 km/h	≤ 40 km/h	s 3 lanes s 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	4-5 lanes ≤ 40 km/h	≤ 40 km/h	4-5 lanes ≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h
	Unsignalized Crossing - Lowest LoS		B	B	B	A	A	A	A	A	A	A	B	B	B	A	A	A	A	A	A
	Level of Service		D	D	D	Α	Α	Α	Α	Α	A	Α	D	D	В	Α	Α	Α	Α	Α	Α
#	Facility Type		Mixed Traffic	Mixed Traffic	Mixed Traffic					Mixed Traffic											
Si	Friction or Ratio Transit:Posted Speed	E	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8					Vt/Vp ≤ 0.6	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8	Vt/Vp ≤ 0.6	Vt/Vp ≤ 0.6	Vt/Vp ≥ 0.8						
Transit	Level of Service	_	D	D	D	-	-	-	-	E	D	D	E	E	D	-	-	-	-	-	-
×	Truck Lane Width																				
Truck	Travel Lanes per Direction	-																			
F	Level of Service		_			_				_				_	_	_		_		_	_

Figure A-3: MMLOS Parameters - North & East Sides

			Atlantic	Atlantic	Atlantic	Hanna	Hanna	Hanna	Manitoba	Manitoba	Nova Scotia	Lynn Williams	Lynn Williams	Metro Diveway	Metro Diveway	Metro Diveway	Metro Diveway
SEGMENT	s	Street A	King-Snooker	Snooker-Liberty	Liberty-South	Snooker-Liberty	Liberty-Alley	Alley-South	Quebec-Nova Scotia	Nova Scotia- Canada	Manitoba- Princes	Lynn Williams- Western Battery	Western Battery Pirandello	Atlantic-Hanna	Hanna-Metro E Alley	Metro E Alley- Lynn Williams	Lynn Williams- Liberty
	Sidewalk Width Boulevard Width		1.5 m < 0.5 m	1.8 m < 0.5 m	1.5 m < 0.5 m	< 1.5 m n/a	1.8 m < 0.5 m	no sidewalk n/a	1.5 m < 0.5 m	1.8 m > 2 m	1.5 m 0.5 - 2 m	≥ 2 m < 0.5	≥ 2 m < 0.5	1.5 m < 0.5 m	< 1.5 m n/a	no sidewalk n/a	≥ 2 m < 0.5
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	s 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	s 3000	≤ 3000	≤ 3000	s 3000	≤ 3000	≤ 3000
Pedestrian	Operating Speed On-Street Parking		≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h yes	≤ 30 km/h yes	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h yes	≤ 30 km/h yes	≤ 30 km/h yes	≤ 30 km/h no	≤ 30 km/h no
est	Exposure to Traffic PLoS	F	D	С	D	F	Α	С	D	Α	С	Α	Α	D	F	С	Α
Ď	Effective Sidewalk Width		1.5 m	2.0 m	1.5 m	1.2 m	2.0 m		1.5 m	2.0 m	1.5 m	2.0 m	2.0 m	1.5 m	1.2 m		2.0 m
<u> </u>	Pedestrian Volume		250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr					
	Crowding PLoS		В	В	В	В	В	-	В	В	В	В	В	В	В	-	В
	Level of Service		D	С	D	F	В		D	В	С	В	В	D	F	-	В
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic					
	Number of Travel Lanes		≤ 2 (no centreline)	2-3 lanes total	2-3 lanes total	2-3 lanes total	≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)	2-3 lanes total	≤ 2 (no centreline)	2-3 lanes total					
	Operating Speed		≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h					
	# of Lanes & Operating Speed LoS		A	Α	Α	A	Α	Α	В	В	В	Α	A	Α	В	Α	В
Bicycle	Bike Lane (+ Parking Lane) Width																
Š	Bike Lane Width LoS	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ä	Bike Lane Blockages																
	Blockage LoS			-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge					
	No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed		≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes					
	Unsignalized Crossing - Lowest LoS		≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	s 40 km/h	s 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	s 40 km/h	≤ 40 km/h	≤ 40 km/h A	s 40 km/h
	Level of Service		A	A	A	A	A	A	В	В	В	A	A	A	В	A	В
#	Facility Type		Mixed Traffic	Mixed Traffic					Mixed Traffic	Mixed Traffic	Mixed Traffic						
Transit	Friction or Ratio Transit Posted Speed	E	VtVp ≥ 0.8	Vt/Vp ≥ 0.8					Vt/Vp ≥ 0.8	VtVp ≥ 0.8	Vt/Vp ≥ 0.8						
Ē.	Level of Service	_	D	D	-	-	-		D	D	D	-	-		-	-	-
	Truck Lane Width																
충	Travel Lanes per Direction																
Truck	Level of Service	-															-

Figure A-4: MMLOS Parameters - North & East Sides

Secretary Secr	Fraser	Fraser		Mowat	Mowat	Dufferin	Dufferi	Dufferin	Dufferin	iberty		Liberty	Liberty	Liberty	Liberty	Liberty	Liberty	King	King	King	Kii			
Common C	_iberty-South	ng-Liberty	outh H	Liberty-Sout	King-Liberty				Ging-Liberty				Atlantic-Hanna			Mowat-Fraser	Dufferin-Mowat	Atlantic-Sudbury				Street A	s	SEGMENTS
Part Contracting Speed																								
Crowding PLOS E	≤ 3000	≤ 3000)	≤ 3000	≤ 3000	> 3000	> 300	> 3000	> 3000	3000		> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	> 3000	3000	> 30		Avg Daily Curb Lane Traffic Volume	
Crowding PLOS E			√h								m/h > 30													듩
Crowding PLOS E			_			no	no	-		no				no	no			no		no	n	_		₩ 🛱
Crowding PLOS E		-	4		С	E	E		-	E			U	F	F	-	-	С		E		E		<u>88</u>
Crowding PLOS E											٠.													<u>8</u>
E D C C D D D E B C E - B D D D D D E B B C E - B D D B D D D B D D D			/hr		250 ped/hr				250 ped/hr		ır 2			250 ped/hr	250 ped/hr					ped/hr 5	500 p			α.
Type of Cycling Facility Mixed Traffic M	В	В	_	В		В	В	В	В	В	_	В	В		-	В	В	В	В	В	-		Crowding PLOS	
Number of Travel Lanes Operating Speed # 4-5 lanes total 4-5 l	D	D		В	-	E	E	С	В	E		D	D	-	-	D	С	С	D	E	E		Level of Service	
Number of Travel Laftes A-5 Janes total Centreline	xed Traffic	d Traffic	c Mix	Mixed Traffic	Mixed Traffic	d Traffic	Mixed Traff	Mixed Traffic	ed Traffic	Traffic N	Mixe	Mixed Traffic	Mixed Traffic	lixed Traffic	lixed Traffic	lixed Traffic	lixed Traffic	Aixed Traffic	ed Traffic	d Traffic Mix	Mixed		Type of Cycling Facility	
Fortunes & Operating Speed LoS						lanes total	2-3 lanes	4-5 lanes total	5 lanes total									4-5 lanes total	lanes total	ines total 4-	4-5 lan		Number of Travel Lanes	
Bike Lane (* Parking Lane) Width Sike Lane (* Parking Lane) Width Sike Lane (* Parking Lane) Width LoS Sike Lane (* Parking Lane) Width (homedan = +1.8 m) No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed Level of Service Servi			/h							0 km/h) s													
Bike Lane Width LoS	A	Α		Α	A	В	В	D	D	Α	_	A	Α	Α	Α	Α	Α	D	D	D			# of Lanes & Operating Speed LoS	
State Stat																								<u> </u>
State Control Contro			_	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	_	D		5
Median Retuge Width (no median = 1.8 m) No. of Lanes 4.5 lan											_													ö
No. of Lanes at Unsignalized Crossing 4-5 lanes	40	2	1000	- 4.0	- 4.0			- 40 40	10	-			- 40 40	- 4.0	- 4.0 6	- 4.0	- 4.0	- 4.0	0	-	. 4.0			
Sidestreet Operating Speed			_				_				_													
Unsignalized Crossing - Lowest LoS B B B A A A A A A A			_				_	-		_	_	_	-											
Level of Service																								
Friction or Ratio Transit Posted Speed	Α	Α		Α	Α	В	В	D	D	A		А	Α	Α	Α	Α	Α	D	D	D				
Friction or Ratio Transit Posted Speed			Т			d Traffic	Mixed Traff	Mixed Traffic	ed Traffic	Traffic N	Mixe	Mixed Traffic	Mixed Traffic					vixed Traffic	ed Traffic	Traffic Mix	Mixed Tr		Facility Type	##
E laval of Sarvice D D D D E D D E E D						≥ 0.8	Vt/Vp ≥ 0.8	Vt/Vp ≤ 0.6	/p ≤ 0.6	0.8 V	VtV	VtVp ≥ 0.8	Vt/Vp ≤ 0.6					/t/Vp ≥ 0.8	p ≥ 0.8 \	: 0.8 Vt/\	Vt/Vp ≥ 0	Е	Friction or Ratio Transit:Posted Speed	Ĕ
				-	•	D	D	E	E	D		D	E	-			•	D	D	D			Level of Service	Ĕ
Truck Lane Width																							Truck Lane Width	
Travel Lanes per Direction																							Travel Lanes per Direction	출
Travel Lanes per Direction	_	-		-		-				-		-		-			•	-	-	-		•	Level of Service	롣

Figure A-5: MMLOS Parameters - South & West Sides

			Atlantic	Atlantic	Atlantic	Hanna	Hanna	Hanna	Manitoba	Manitoba	Nova Scotia				Metro Diveway	Metro Diveway	Metro Diveway
SEGMENT	S	Street A	King-Snooker	Snooker-Liberty	Liberty-South	Snooker-Liberty	Liberty-Alley	Alley-South	Quebec-Nova Scotia	Nova Scotia- Canada	Manitoba- Princes	Lynn Williams- Western Battery	Western Battery Pirandello	Atlantic-Hanna	Hanna-Metro E Alley	Metro E Alley- Lynn Williams	Lynn Williams- Liberty
	Sidewalk Width Boulevard Width		1.5 m < 0.5 m	1.8 m < 0.5 m	1.5 m < 0.5 m	≥ 2 m > 2 m	no sidewalk n/a	no sidewalk n/a	< 1.5 m n/a	no sidewalk n/a	no sidewalk n/a	≥ 2 m < 0.5	≥ 2 m < 0.5	1.5 m < 0.5 m	1.5 m < 0.5 m	1.5 m < 0.5 m	≥ 2 m < 0.5
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000
Pedestrian	Operating Speed On-Street Parking		≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h yes	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h yes	≤ 30 km/h yes	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no	≤ 30 km/h no
est	Exposure to Traffic PLoS	E	D	С	D	Α	С	С	F	С	С	Α	Α	D	D	D	Α
Ö	Effective Sidewalk Width		1.5 m	2.0 m	1.5 m	2.0 m			1.2 m			2.0 m	2.0 m	1.5 m	1.5 m	1.5 m	2.0 m
o.	Pedestrian Volume		250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr	250 ped/hr					
	Crowding PLoS		В	В	В	В	-	-	В	-	-	В	В	В	В	В	В
	Level of Service		D	С	D	В	-	-	F	-	-	В	В	D	D	D	В
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic					
	Number of Travel Lanes		≤ 2 (no centreline)	2-3 lanes total	2-3 lanes total	2-3 lanes total	≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)	2-3 lanes total	≤ 2 (no centreline)	2-3 lanes total					
	Operating Speed		≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h					
	# of Lanes & Operating Speed LoS		A	Α	A	A	A	Α	В	В	В	A	Α	A	В	Α	В
Bicycle	Bike Lane (+ Parking Lane) Width																
, š	Bike Lane Width LoS	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ă	Bike Lane Blockages																
	Blockage LoS			-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge					
	No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed		≤ 3 lanes ≤ 40 km/h	≤ 3 lanes ≤ 40 km/h	≤ 3 lanes ≤ 40 km/h	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes ≤ 40 km/h	≤ 3 lanes ≤ 40 km/h	≤ 3 lanes ≤ 40 km/h	≤ 3 lanes ≤ 40 km/h	≤ 3 lanes	≤ 3 lanes ≤ 40 km/h	≤ 3 lanes	≤ 3 lanes
	Unsignalized Crossing - Lowest LoS		s 40 km/n	≤ 40 km/n	≤ 40 Km/n	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h A	≤ 40 km/h	\$ 40 KM/N	≤ 40 km/n	s 40 km/n	≤ 40 km/n	≤ 40 km/h	≤ 40 km/n	≤ 40 km/h A	≤ 40 km/h
	Level of Service		A	A	A	A	A	A	В	В	В	A	A	A	В	A	В
æ	Facility Type		Mixed Traffic	Mixed Traffic					Mixed Traffic	Mixed Traffic	Mixed Traffic						
II S	Friction or Ratio Transit:Posted Speed	E	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8					Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8	VtVp ≥ 0.8						
Transit	Level of Service	_	D	D	-	-	-	-	D	D	D	-	-	-	-	-	-
	Truck Lane Width																
충	Travel Lanes per Direction																
Truck	Level of Service	-	-	-		-			-	-		-	-		-		-

Figure A-6: MMLOS Parameters - South & West Sides

Appendix B: Signal Timing Plans

LOCATION:	King St & At	lantic Ave				DISTRICT:	Toronto & East York
MODE/COMMENT:	SAP with PR		re- Polara Al	PS*		COMPUTER SYSTEM:	TransSuite
TCS:	1912					CONTROLLER/CABINET TYPE:	PEEK ATC-1000 / TS2 T1
PREPARED BY / DATE:	Ranajamil Ift	ikhar / Nove	mber 19, 201	8		CONFLICT FLASH:	Red & Red
CHECKED BY/ DATE:	Carmen Lam	/ November	21, 2108			DESIGN WALK SPEED:	1.0 m/s (FDW based on full crossing at 1.2 m/s)
IMPLEMENTATION DATE:	November 29	9, 2018				CHANNEL/DROP:	4026/12
		OFF				FIRMWARE VERSION:	3.018.1.2976
			AM	PM	Caribana	Phase Mode	
NEMA Phase		All Other Times	07:00-09:30 M-F	16:00-18:30 M-F	To be determined	(Fixed/Demanded or Callable)	Remarks
	Local Plan	Pattern 1	Pattern 2	Pattern 3	Pattern 4	+	
	Split Table	Split 1	Split 2	Split 3	Split 4	1	
							Pedestrian Minimums:
1	WLK						EWWK = 7 sec. EWFD = 14 sec. NSWK = 7 sec. NSFD = 13 sec.
NOT USED	MIN						NB phase is callable by vehicle or pedestrian
()	MAX1 AMB						actuation. If a vehicle and/or pedestrian call is
	ALR						received, the maximum NBG is served. The NSWK &
	SPLIT						NSFD are displayed on the pedestrian signal heads if a vehicle and/or pedestrian call is received.
King St	WIK 7						
	WLK 7 FDW 14	l				Fixed	See back for TSP Instructions.
 	MIN 21	1	1			POZ activated by	APS is on during 7 secs of EWWK and NSWK when
\ <> /	MAX1 27	1	1			Request Loop	activated by pushbuttons
	AMB 4 ALR 3	l				(max extension of 30 secs in	Extended Push Activation =3 secs
	SPLIT	33	43	43	53	Green/Walk)	TSP EB & WB disabled on November 29,2018.
							Phase 8 can only be activated by pushbutton to avoid
3	WLK FDW	1	1				being constantly actuated if a construction vehicle sits on or close to the stopbar loop for construction
NOT USED	MIN	1	1				Script 4 blocks TSP requests from streetcars less than
NOTUSED	MAX1						90 seconds behind the previous streetcar in the same
	AMB ALR						direction. Additional 1 second above the pedestrian minimum
	SPLIT						provided to the Phase 4/8 SPLIT is to be served in
Atlantic Ave							Phase 4/8.
4	WLK 7 FDW 13					Callable by Leddar O/H	
 	MIN 20					Detection and/or Pushbutton;	
	MAX1 20					(truncations allowable to	
\ ' \ /	AMB 4 ALR 2					pedestrian minimum)	
	SPLIT 2	27	27	27	27		
							1
5	WLK						
	FDW MIN						
NOT USED	MAX1						
	AMB						
	ALR SPLIT	l					
King St	OFLII	l					1
6	WLK 7	l					
/ 	FDW 14 MIN 21	l				Fixed POZ activated by	
[→	MAX1 27	l				Request Loop	
	AMB 4	1	1			(max extension of 30 secs in	
	ALR 3 SPLIT	33	43	43	53	Green/Walk)	
		- 33	43	43	53		1
7	WLK	l					
/ \	FDW	l					
NOT USED	MIN MAX1	l					
	AMB	l					
	ALR	l					
Atlantic Ave	SPLIT	-	-				-
8 Atlantic Ave	WLK 7	l					
/ ^1 \	FDW 13	l					
	MIN 20 MAX1 20	l				Callable by Pushbutton (truncations allowable to	
	AMB 4	l				pedestrian minimum)	
	ALR 2					,	
	SPLIT	27	27	27	27		-
	CL	60	70	70	80		
	OF	6	6	6	29		
II .	1	ı	I	1	l	I .	

LOC: King St & Atlantic Ave T.S.P. PARAMETERS MODE: SAP with PR, TSP & 2 Wire- Polara APS* TSP RUN TSP RUN TCS: 1912 PREPARATION DATE (TIMING CARD): November 19, 2018 PREPARED: # 2 OFFSET CORRECTION PARAMETERS 2.8.2 Transit Run Parameters O.C. 2.3.4 O.C. Extend / Reduce (Max. time added & subtracted in sec.) ATC Green Extend Mode Mode 2 Mode 2 From page 1 Ø1 Ø2 Ø3 Ø4 Ø5 Ø6 Ø7 Ø8 [Cycle] [Slop] (Equivalent TTC Algorithm) Thres. Run Enable (x = Yes) X X 5 - 1 - 5 -Run Config = 1 Re AM,PM 2.8.3 Transit Action Plan 2 (Used for Pattern 2) 18 s Spilt Ext. -- 26 -- -- 26 -- 23.4 Rdc. -- 15 -- 1 -- 15 --Run Enable (x = Yes) X X 16 Caribana .8.3 Transit Action Plan 3 (Used for Pattern 3) 20 s Split Ext. -- 30 -- -- 30 -- 25 -- 1 -- 25 --Run Enable (x = Yes) X X 2.8.4 Transit Run Configuration 1 Delay / Extend / Fail
CALLS (and Extends) Ø 2/6 Ø 2/6 Pattern 1 OC Threshold set to 3x OC Rdc due to limited slop. Controller could take up to three cycles to get back in sync from -TSP Recovery. Reduces (Truncates) Ø 4/8 Ø 4/8 2.8.4 Transit Run Config Delay / Extend / Fail CALLS (and Extends) Ø 2/6 Ø 2/6 2.1.9.2 Advanced I/O Scripts Skips Reduces (Truncates) Input Script 4 'TSP26Timer' Blocks TSP 2 and TSP 6 calls from vehicles with a headway less than 90 sec .8.4 Transit Run Configuration 3 To view current status of TSP inputs, go to screen 2.1.9.2 page 01 and press [C]. Delay / Extend / Fail CALLS (and Extends) Ø 2/6 Ø 2/6 Skips Ø 4/8 Ø 4/8 Ø1 | Ø2 | Ø3 | Ø4 | Ø5 | Ø6 | Ø7 | Ø8 2.8.6 TSP Split Tables: 1, 2, 3 & 4 GRN EXT (SDW Extension) -- --GRN RDC (Reduction) WLK EXT (Walk Extension) -- 30 TSP RUN # 6 Notes: WB Thru SRM #1 Ch #2 TSP Input 6 BIU #3 PIN #12a King St 2 230 m TSP RUN # 2 EB Thru SRM #1 Ch #1 TSP Input 2 BIU #3 PIN #10a ATC Mode 0 2 TTC Algor'm **B-2** A Extensions SDW Walk W/SDW W/SDW TSP SUMMARY Maximum Green Extensions: TSP Loop Legend

Request (Thru)

Cancel (Thru)

TSP Loop Legend
EWG: 30 s Green/Walk
NSG Truncation to ped minimum Schematic of TSP Loops and TSP Runs (N.T.S)

2019-03-14-TCS1912_Current_Timing.xlsx 14/03/2019

APS ready but not activated*

LOCATION:	King St & S	Shaw St				DISTRICT:	Toronto & East York
MODE/COMMENT:	SAP with P	R, 2-Wire	Polara APS	S & TSP		COMPUTER SYSTEM:	N TransSuite
TCS:	1628					CONTROLLER/CABINET TYPE:	Peek ATC 1000 / TS2 T1
PREPARED BY / DATE:		lftikhar / I	November 1	9, 2018		CONFLICT FLASH:	Red & Red
CHECKED BY/ DATE:			mber 21, 21			DESIGN WALK SPEED:	1.0 m/s (FDW based on full crossing at 1.2 m/s)
IMPLEMENTATION DATE:	November					CHANNEL/DROP:	4026/14
						FIRMWARE VERSION:	3.018.1.2976
		OFF	AM	PM	Gardiner		
					Closure	-	
		All Other	06:45-09:30	15:45-18:15	Times to be	Phase Mode	
NEMA Phase		Times	M-F	M-F	determined	(Fixed/Demanded/Callable)	Remarks
						,	
	Local Plan Split Table	Pattern 1 Split 1	Pattern 2 Split 2	Pattern 3 Split 3	Pattern 4 Split 4	-	
		Opiit 1	Opiit E	Opin 0	Opin 4		Pedestrian Minimums:
1	WLK						EWWK = 7 secs; EWFD = 15 secs
(FDW MIN						NSWK = 7 secs; NSFD = 13 secs NS phase is callable by vehicle or pedestrian actuation.
NOT USED	MAX1						If a vehicle and/or pedestrian call is received, the
	AMB						maximum NSG is served. The NSWK & NSFD are
	ALR SPLIT						displayed on the pedestrian signal heads if a pedestrian or vehicle call is received.
King St							APS on for 7 secs of EWWK and NSWK when activated
2	WLK 7 FDW 15		1			Fixed POZ activated by	by the push buttons. Extended Push Activation = 3 secs
/ → \	MIN 22					Request Loop	See back for TSP Instructions.
\ ←──→ J	MAX1 33					(max extension of 30 secs in	TSP re-enabled for both directions on February 2,
	AMB 4 ALR 2					Green/Walk)	2018 Script 5 blocks TSP requests from streetcars less than
	SPLIT	38	43	43	53		90 seconds behind the previous streetcar in the same
2							direction.
3	WLK FDW						Additional 1 second above the pedestrian minimum provided to the Phase 4/8 SPLIT is to be served in
NOT USED	MIN						Phase 4/8.
(NOT USED)	MAX1						
	AMB ALR						
	SPLIT						
Shaw St	WLK 7						
4 / 1 1	WLK 7 FDW 13					Callable by Wavetronix detector	
/ T \	MIN 20					and/or Push Button	
	MAX1 21 AMB 4						
\ . · \	AMB 4 ALR 2						
	SPLIT	27	27	27	27		
5	WLK						
	FDW						
NOT USED	MIN						
	MAX1 AMB						
	ALR						
10.00	SPLIT						-
King St	WLK 7						
	FDW 15					Fixed	
(<> \	MIN 22 MAX1 33					POZ activated by Request Loop	
()	AMB 4						
	ALR 2					(max extension of 30 secs in Green/Walk)	
	SPLIT	38	43	43	53		-
7	WLK					1	
	FDW					1	
NOT USED	MIN MAX1		1				
	AMB					1	
	ALR					1	
Shaw St	SPLIT	-					-
8 Snaw St	WLK 7		1				
/ 1 \	FDW 13		1				
()	MIN 20 MAX1 21					Callable/Extendable by Wavetronix	
\ ↓ ♥ /	AMB 4					Detector	
	ALR 2		0.00	0.11		1	
	SPLIT	27	27	27	27		1
	CL	65	70	70	80		
	OF	1	1	1	42	1	
	1	1	1	1	1	1	I

Vine Ct 0 Chau Ct

NOTES: No EWLT from 7:00AM-10:00AM, M-F; 3:00PM-7:00PM, M-F; public holidays excepted; bicycles excepted; TTC vehicles excepted on EB.

LOCATION:	King St W &	Strachan Av	Ð					DISTRICT:	Toronto & East York N
MODE/COMMENT:	FXT with TSI	> *						COMPUTER SYSTEM:	TransSuite
TCS:	538							CONTROLLER/CABINET TYPE:	Peek ATC-1000 / TS2 T1
PREPARED BY / DATE:	Ranajamil Ift	ikhar / Nover	nber 19, 2018	3				CONFLICT FLASH:	Red & Red
CHECKED BY/ DATE:	Carmen Lam							DESIGN WALK SPEED:	1.0 m/s (FDW based on full crossing at 1.2 m/s)
IMPLEMENTATION DATE:	November 29							CHANNEL/DROP:	4026/11
		,						CONTROLLER FIRMWARE:	3.018.1.2976
		OFF	AM	PM	NGHT	WKND	SPEC EVENT	Phase Mode	
		All Other	06:45-09:30	15:45-18:15	22:00-06:45	09:00-19:00	Times to be	1	Remarks
NEMA Phase		Times	M-F	M-F	Daily	Sat & Sun	determined	(Fixed/Demanded or Callable)	
	Local Plan	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 16	†	
	Split Table	Split 1	Split 2	Split 3	Split 4	Split 5	Split 16	Ť	
									Pedestrian Minimums:
1	WLK FDW							Demanded	EWWK = 7 sec, EWFD = 13 sec NSWK = 7 sec, NSFD = 14 sec
/ \	MIN 6							(Phase not currently in use -	*See back for TSP Instructions.
(1)	MAX1 7							only implemented for during	WB & EB TSP enabled on Feb 3, 2014.
\ \ \	AMB 3							Dufferin St bridge rehab)	Script 1 blocks TSP requests from streetcars
	ALR 1								less than 90 seconds behind the previous
10. 4.	SPLIT								streetcar in the same direction.
2 King St	WLK 7								
- / _ \	FDW 13							Fixed	
(MIN 20							POZ activated by	
\ <>)	MAX1 32							Request Loop	
	AMB 3							(max extension of 30 secs in	
	ALR 3 SPLIT	38	46	46	38	41	42	EBG/Walk)	
	OF EII	30	40	40	30	41	42		†
3	WLK								
	FDW								
NOT USED	MIN MAX1								
(' '	MAX1 AMB								
	ALR								
	SPLIT							<u> </u>	1
Strachan Av									
4	WLK 7							- ·	
/ ↑ 1 \	FDW 14 MIN 21							Fixed	
	MAX1 22							(truncations allowable to	
\ ↓ /	AMB 4							pedestrian minimum)	
	ALR 2								
	SPLIT	32	34	34	32	34	28		
5	WLK								
- /	FDW								
NOT USED	MIN								
(NOT USED)	MAX1								
	AMB ALR								
\sim	SPLIT								
King St									1
6	WLK 7								
/<>	FDW 13			1				Fixed	
	MIN 20 MAX1 32							POZ activated by Request Loop	
\ ◆ → /	AMB 3								
	ALR 3							(max extension of 30 secs in	
	SPLIT	38	46	46	38	41	42	WBG/Walk)	1
7	MILK								
7	WLK FDW								
/	MIN								
NOT USED	MAX1								
	AMB								
	ALR								
Strachan Av	SPLIT		-	-		_			+
8 Strachan Av	WLK 7								
~ / ^ ı \	FDW 14							Fixed	
()	MIN 21								
\ 1	MAX1 22							(truncations allowable to	
\ v v /	AMB 4			1				pedestrian minimum)	
	ALR 2 SPLIT	32	34	34	32	34	28		
	O/ LII	32	34	34	J2	34	20		t
	CL	70	80	80	70	75	70		
	OF	14	42	50	59	47	14		
	1		1	I	1	1		I	I

LOC: King St & Strachan Av T.S.P. PARAMETERS TSP RUN TSP RUN MODE: FXT with TSP PREPARATION DATE (TIMING CARD): November 20, 2018 TCS: 538 PREPARED: RI #2 #6 OFFSET CORRECTION PARAMETERS EB Thru WB Thru 2.3.2.x 2.8.2 Transit Run Parameters O.C. 2.3.4 O.C. Extend / Reduce (Max. time added & subtracted in sec.) From page 1

| Ø 1 | Ø 2 | Ø 3 | Ø 4 | Ø 5 | Ø 6 | Ø 7 | Ø 8 | Cycle | Slop | Thres. ATC Green Extend Mode Mode 2 Mode 2 (Equivalent TTC Algorithm) A 2.8.3 Transit Action Plan 1 (Used for Patterns 1, 4, 5, 16)
Run Enable (x = Yes) X X Pattern 17 s [24 %]
 Split 1
 Ext.
 - 13
 - 13
 - 13
 - 13

 Rdc.
 - 5
 - 4
 - 5
 - 4
 Run Config = 1 Recovery = 2 (O.C. with delay) 2.8.3 Transit Action Plan 2 (Used for Pattern 2) 20 s Run Enable (X = Yes) PM 2.8.3 Transit Action Plan 3 (Used for Pattern 3) 20 s -- 15 -- 15 -- 15 -- 15 Spit 3 Ext. -- 15 -- 15 -- 15 Rdc. -- 6 -- 4 -- 6 -- 4 Run Enable (x = Yes) X Run Config = 3 Recovery = 2 (O.C. with delay) NIGHT 2.8.4 Transit Run Configuration 1 18 s -- 13 -- 13 -- 13 -- 13 Delay / Extend / Fail -- / -- / 235 CALLS (and Extends) Ø 2/6 Ø 2/6 Rdc. -- 5 -- 4 -- 5 -- 4 Skips 19 s [25 %] Reduces (Truncates) Ø 4/8 Ø 4/8 Split 5 Ext. -- 14 -- 14 -- 14 -- 14 Rdc. -- 6 -- 4 -- 6 -- 4 2.8.4 Transit Run Configuration 2 SPECIAL EVENT Delay / Extend / Fail
CALLS (and Extends) Pattern 1 18 s [26 %] 13 -- 13 -- 13 -- 13 Ø 2/6 .8.4 Transit Run Configuration 3 2.1.9.2 Advanced I/O Scripts Delay / Extend / Fail 4 / -- / 235 9 / -- / 235 CALLS (and Extends) Blocks TSP 2 and TSP 6 calls from vehicles with a headway less than 90 sec To view current status of TSP inputs, go to screen 2.1.9.2 page 01 and press [C]. Skips Ø 4/8 Reduces (Truncates) 2.8.6 TSP Split Tables: 1 & 4 Ø 1 Ø 2 Ø 3 Ø 4 Ø 5 Ø 6 Ø 7 Ø 8 GRN EXT (SDW Extension)
GRN RDC (Reduction)
WLK EXT (Walk Extension) 2.8.6 TSP Split Tables: 2. 3 & 5 GRN EXT (SDW Extension) --GRN RDC (Reduction) -- 30 WLK EXT (Walk Extension) -- 30 2.8.6 TSP Split Table: 16 GRN EXT (SDW Extension) -- -- -- -- --GRN RDC (Reduction) -- -1 -- ---- -- 30 -- -1 WLK EXT (Walk Extension) TSP RUN # 6 WB Thru SRM #1 Ch #2 TSP Input 6 BIU #3 PIN #12a Dundas St 130 m \square **2 2**2 TSP RUN # 2 SRM #1 Ch #1 TSP Input 2 BIU #3 PIN #10a ATC Mode 0 TTC Algor'm B-2 TSP SUMMARY Maximum Green Extensions TSP Loop Legend EWG: 30 s Green/Walk Schematic of TSP Loops Request (Thru)
Cancel (Thru) Truncation of phases 4 and 8 to ped min and TSP Runs (N.T.S)

14/03/2019

LOCATION: MODE/COMMENT: TCS: PREPARED BY / DATE: CHECKED BY / DATE:	SAP with PR 1851 Ranajamil Ift Carmen Lam	& TSP ikhar / Nove	mber 19, 201			DISTRICT: COMPUTER SYSTEM: CONTROLLER/CABINET TYPE: CONFLICT FLASH: DESIGN WALK SPEED:	Toronto & East York TransSuite Peek ATC 1000 / TS2 T1 Red & Red 1.0 mis (FDW based on full crossing at 1.2 m/s)
IMPLEMENTATION DATE:	November 2	9, 2018 OFF	AM	PM	CARIBANA	CHANNEL/DROP: CONTROLLER FIRMWARE: Phase Mode	4026/15 3.018.1.2976
NEMA Phase	Local Plan Split Table	All Other Times Pattern 1	06:45-09:30 M-F Pattern 2 Split 2	15:45-18:15 M-F Pattern 3 Split 3	Times to be Determined Pattern 4	(Fixed/Demanded or Callable)	Remarks
1 NOT USED	WLK FDW MIN MAX1 AMB ALR SPLIT	Split 1	Зр іі 2	эрнгэ	Split 4		Pedestrian Minimums: NSWK = 7 sec. NSED = 14 sec EWWK = 7 sec. EWED = 17 sec NS phase is calable by wehicle or pedestrian actuation. If a vehicle call and/or a pedestrian call is received, the pedestrian minimum will be served. The NSWK & NSED are only displayed on the pedestrian signal heads if a vehicle and/or
2 King St	WLK 7 FDW 17 MIN 24 MAX1 43 AMB 4 ALR 2 SPLIT	48	53	53	53	Fixed POZ activated by Request Loop (max extension of 30 secs in Green/Walk)	pedestrian call is received. See back for TSP Instructions. E8 & WB TSP enabled on Feb 3, 2014 Additional 1 second above the pedestrian minimum provided to the Phase 4/8 SPLIT is to be served in Phase 4/8.
3 NOT USED	WLK FDW MIN MAX1 AMB ALR SPLIT						Script 1 blocks TSP requests from streetcars less than 90 seconds behind the previous streetcar in the same direction.
Private Access 4	WLK 7 FDW 14 MIN 21 MAX1 21 AMB 3 ALR 2 SPLIT	27	27	27	27	Callable by Stopbar loop and/or Pushbutton; Truncations allowable to pedestrian minimum	
5 NOT USED	WLK FDW MIN MAX1 AMB ALR SPLIT						
6 King St	WLK 7 FDW 17 MIN 24 MAX1 43 AMB 4 ALR 2 SPLIT	48	53	53	53	Fixed POZ activated by Request Loop (max extension of 30 secs in Green/Walk)	
7 NOT USED	WLK FDW MIN MAX1 AMB ALR SPLIT						
8 Sudbury St	WLK 7 FDW 14 MIN 21 MAX1 21 AMB 3 ALR 2 SPLIT	27	27	27	27	Callable by Traficam detector and/or Pushbutton; Truncations allowable to pedestrian minimum	
	CL OF	75 1	80 1	80 1	80 52		

LOCATION:	Ot	0 M/-III	. W// D Ot			DISTRICT:	Towards & Food Work
MODE/COMMENT:		& Wellington S	t W/ Douro St			COMPUTER SYSTEM:	Toronto & East York TransSuite
TCS:	FXT with 2-wir	e Polara APS					
TCS: PREPARED/CHECKED BY:	2403					CONTROLLER/CABINET TYPE: CONFLICT FLASH:	PEEK ATC-1000 / TS2T1
	RI/DS						Red & Red
PREPARATION DATE:	May 16, 2017					DESIGN WALK SPEED:	1.0m/s (FDW based on full crossing @ 1.2m/s)
IMPLEMENTATION DATE:	July 19, 2018					CHANNEL/DROP:	4026/30
		055			LODEO EVENT	FIRMWARE VERSION:	3.018.2976
		OFF All Other	AM 06:45-09:30	PM 15:45-18:15	SPEC EVENT Times to be	Phase Mode (Fixed/Demanded or	Remarks
NEMA Phase		Times	M-F	M-F	determined	Callable)	
	Local Plan	Pattern 1	Pattern 2	Pattern 3	Pattern 4	i ·	
	Split Table	Split 1	Split 2	Split 3	Split 4		
1	WLK						Pedestrian Minimums: NSWK = 7 sec. NSFD = 16 sec
. /	FDW						EWWK = 7 sec, EWFD = 13 sec
NOT USED	MIN						Left-Turn Passage Time = 2 secs
(1101 0025)	MAX 1 AMB						Extended APS Push Activation = 3 secs
	ALR						When activated, actuated APS on during EW & NS walk periods when no arrows are displayed.
\sim	SPLIT						portodo witari no dirovio die displayed.
Strachan Ave							Ť
2	WLK 7 FDW 16					Fixed	
/ ♠ ↑ \	MIN 23						
()	MAX 1 37						
\ \ /	AMB 4						
	ALR 2 SPLIT	43	53	42	53		
	SPLII	43	53	42	53		+
3	WLK						
	FDW						
()	MIN 6 MAX 1 6					Callable and extendable by 9m setback loop	
\ \ \	AMB 3					эт ѕетраск гоор	
	ALR 1						
	SPLIT			11			<u>↓</u>
Douro St	WLK 7					Firms	
4	FDW 13					Fixed	
(MIN 20						
\	MAX 1 21						
	AMB 3						
	ALR 3 SPLIT	27	27	27	27		
							†
5	WLK						
(-)	FDW MIN 6					NBLA Fixed	
(1	MAX 1 6					NDLA FIXEU	
\ /	AMB 3						
	ALR 1						
Strachan Ave	SPLIT			11			1
6 Strachan Ave	WLK 7					Fixed	
/ A	FDW 16		1	l	1		
(I \	MIN 23						
\ 1 /	MAX 1 37 AMB 4						
\v v /	AMB 4 ALR 2						
	SPLIT	43	53	31	53		1
7	WLK FDW		1	l	1	1	
()	MIN						
NOT USED	MAX 1						
	AMB						
	ALR SPLIT						
Wellington St W	OFLII		-		-		†
8	WLK 7					Fixed	
	FDW 13						
· >	MIN 20						
\ /	MAX 1 21 AMB 3						
	ALR 3						
	SPLIT	27	27	38	27		<u> </u>
	CL	70	80	80	80		
	OF OF	70 27	48	80 46	27		
	1-"	~-	1	"	l		

NOTES:

2019-03-14-TCS1628_Current_Timing.xlsx

14/03/2019

LOCATION:			/ Private Acc	ess				DISTRICT:	Toronto & East York
MODE/COMMENT:	SAP with P	R & TSP						COMPUTER SYSTEM:	TransSuite
TCS: PREPARED/CHECKED BY:	1449 BF							CONTROLLER/CABINET TYPE: CONFLICT FLASH:	Peek ATC-1000 / TS2T1 Red & Red
PREPARATION DATE:	August 6, 2	019						DESIGN WALK SPEED:	1.0 m/s (FDW based on full crossing at 1.2 m/s)
IMPLEMENTATION DATE:	August 6, 2							CHANNEL/DROP:	4007/19
	J ,							CONTROLLER/FIRMWARE:	3.018.1.2976
		OFF	AM	PM	NGHT	WKND	Event	Phase Mode	Remarks
NEMA Phase		All Other Times	06:30-09:30 M-F	15:00-19:00 M-F	23:00-06:30 Daily	10:00-19:00 Sat/Sun	TBD	(Fixed/Demanded or Callable)	
NEMAT HOSE	Local Plan	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Callable)	
	Split Table	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6		Pedestrian Minimums.
1	WLK								NSWK = 7 sec, NSFD = 11 sec
	FDW MIN								EWWK = 7 sec, EWFD = 11 sec EW phase is callable by vehicle and/or pedestri
NOT USED	MAX1								actuation. If a vehicle and/or pedestrian call is
	AMB								received, the maximum EWG is served. The
	ALR SPLIT								EWWK & EWFD are displayed on the pedestria signal heads if a vehicle and/or pedestrian call is
Dufferin St									received.
2	WLK 7 FDW 11							Fixed	Side Street Passage Time = 3 sec
/ ↑ ↑	MIN 18							POZ activated by	See back for TSP instructions TSP enabled on May 22, 2015
	MAX1 47							Request Loop	Script #2 is used to mitigate issues with TSP
\ \ \ /	AMB 4 ALR 2							(Max extension of 30 secs in Green/WLK)	operation in ATC-1000 firmware version 3.018.1.2976
	SPLIT 2	52	52	40	40	53	42	Green/WLK)	Script #1 is revised to eliminate the extended
3	WLK								Walk on Phase 4 and 8 for all times.
"	FDW								<u> </u>
NOT USED	MIN								
(NOT GOLD)	MAX1 AMB								
	ALR								ľ
Private Access	SPLIT								-
4 Private Access	WLK 7							Callable by Traficam	
	FDW 11							& pushbutton.	
	MIN 18 MAX1 18							Extendable by Traficam.	
	AMB 3							(Truncations allowed to	
	ALR 2 SPLIT	24	28	40	24	27	28	pedestrian minimum)	
12	SFLIT	24	20	40	24	21	20		1
5	WLK FDW								
()	MIN						A		
NOT USED	MAX1					7			
	AMB ALR								
	SPLIT]
Dufferin St	WLK 7							Fixed	
^ / 1 \	FDW 11							Fixed	
(MIN 18							POZ activated by	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MAX1 47 AMB 4							Request Loop (Max extension of 30 secs in	
	ALR 2	-	-		/			Green/WLK)	
	SPLIT	52	52	40	40	53	42		1
7	WLK				\ \				
	FDW MIN			1	4				
NOT USED	MAX1								
	AMB								
	ALR SPLIT		7/						
Liberty St							1	and the second second	1
8	WLK 7 FDW 11							Callable by Traficam & pushbutton.	
/ <> \	MIN 18						7	Extendable by Traficam.	
(MAX1 18					CA			
	AMB 3 ALR 2			(3)	-			(Truncations allowed to pedestrian minimum)	
	SPLIT	24	28	40	24	27	28		-
	CL	76	80	80	64	80	70		
	OF	39	74	79	16	1	1		
	I								

TCSCurrent.xlsx 8/6/2019

TCSCurrent.xlsx 8/6/2019

LOCATION:	Dufferin St	& Saskatche	wan Rd						DISTRICT:	Toronto & East York
MODE/COMMENT:		R, 2-wire Pol		SP					COMPUTER SYSTEM:	TransSuite
TCS:	2134	.,							CONTROLLER/CABINET TYPE:	Peek ATC-1000 / TS2T1
PREPARED/CHECKED BY:	Parsons /	MR / DS							CONFLICT FLASH:	Red & Red
PREPARATION DATE:	March 31,								DESIGN WALK SPEED:	1.0 m/s (FDW based on full crossing at 1.2 m/s)
IMPLEMENTATION DATE:	June 22, 20								CHANNEL/DROP:	4007/21
IMIT ELMENTATION DATE.	ourie 22, 2	J11							CONTROLLER/FIRMWARE:	3.018.1.2976
	1	OFF	AM	PM	NGHT	WKND	PRE-BMO	POST-BMO		Remarks
		All Other	06:30-09:30	15:00-19:00	23:00-06:30	10:00-19:00			(Fixed/Demanded or	Remarks
NEMA Phase		Times	M-F	M-F	Daily	Sat/Sun	TBD	TBD	Callable)	
	Local Plan Split Table	Pattern 1 Split 1	Pattern 2 Split 2	Pattern 3 Split 3	Pattern 4 Split 4	Pattern 5 Split 5	Pattern 6 Split 6	Pattern 7 Split 7		
	Split Table	Spill	Spill 2	Spill 3	Spill 4	Spiles	Spill 6	Spilt 7	Callable/Extendable	Pedestrian Minimums:
1	WLK				//				by 9m long setback loop,	NSWK = 7 sec, NSFD = 20 sec
/ I A \	FDW MIN 6				/	1			All times except NGHT plan. Callable at all times by transit	EWWK = 7 sec, EWFD = 14 sec
	MIN 6 MAX1 7								POZ activated by	Left Turn Passage Time = 2 see SBLA and WBRA are displayed
\ ┗ /	AMB 3								Request Loop	simultaneously.
	ALR 1					7.0			(Max extension of 16 secs in	WB phase is callable by vehicle and/or
Dufferin St	SPLIT	11	11	11	0	11	20	11	Green)	pedestrian actuation. If a vehicle and/or
2	WLK 7								Fixed.	pedestrian call is received, the maximum
/ A ^ \	FDW 20									WBG is served. The EWWK & EWFD are displayed on the pedestrian signal heads
(T)	MIN 27				A			/		vehicle and/or pedestrian call is received.
\ \ /	MAX1 30 AMB 4								4	Side Street Passage Time = 3 sec
•••	ALR 3									APS on during 7 sec of NSWK & 7 sec of
	SPLIT	38	39	40	35	42	41	35		EWWK when activated by pushbutton.
3	WLK									Extended Push Activation = 3 sec See back for TSP instructions.
	FDW						4		A .	TSP enabled on May 22, 2015
(NOT USED)	MIN						7			,
NOTOSED	MAX1						7		A STATE OF THE STA	
	AMB ALR									
	SPLIT									
	JUNE 12							V .		
4	WLK 7						A		Served concurrently with	
	FDW 14 MIN 21							4	Phase 8.	
ACTIVATED	MAX1 21					~				
	AMB 3									
	ALR 2 SPLIT	27	29	29	29	27	29	44		
							4			1
5	WLK				7		7			
	FDW MIN									
NOT USED	MAX1					4				
	AMB									
	ALR				4			7		
Dufferin St	SPLIT					4				1
6 Dulletin St	WLK 7								Fixed.	
/ I \	FDW 20									
	MIN 27 MAX1 41					7				
\ \ \	AMB 4									
•	ALR 3			- 4						
	SPLIT	49	51	51	35	53	61	46		4
7	WLK									
	FDW			U			7			
(NOT USED)	MIN									
(1.5. 6625	MAX1 AMB									
	ALR									
	SPLIT									
Saskatchewan Rd										1
8	WLK 7 FDW 14								Callable by stopbar loop and/or pushbutton.	
/ <> \	MIN 21								Extendable by stopbar loop.	
	MAX1 21								,p	
()	AMB 3			*						
	ALR 2 SPLIT	27	29	29	29	27	29	44		
										1
	CL	76	80	80	64	80	90	90		
	OF	68	15	31	1	33	1	1	1	1

TCSCurrent.xlsx 24/09/2018

LOCATION: King St & Dufferin St Toronto & East York DISTRICT: N MODE/COMMENT: **FXT with TSP** COMPUTER SYSTEM: **TransSuite** TCS: 539 CONTROLLER/CABINET TYPE: Peek ATC-1000 / TS2T1 PREPARED BY / DATE: Kelly Hannah \ September 16, 2020 CONFLICT FLASH: Red & Red CHECKED BY / DATE: Ameneh Dialameh \ September 30, 2020 DESIGN WALK SPEED: 0.9 m/s (FDW based on full crossing at 1.1 m/s) IMPLEMENTATION DATE: January 21, 2021 CHANNEL/DROP: 4026/18 CONTROLLER/FIRMWARE: 3.018.1.2976 Phase Mode AM 06:30-09:30 PM NGHT 23:00-06:30 WKND 10:00-19:00 Caribana Remarks All Other 15:00-19:00 (Fixed/Demanded or TBD **NEMA Phase** Times M-F M-F Daily Sat/Sun Callable) Local Plan Split Table Pattern 6 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Split 6 Split 1 Split 2 Split 4 Split 5 Split 3 Protected/Permissive Pedestrian Minimums: WBLTGA EWWK = 8 sec, EWFD = 15 sec FDW MIN Callable by WBLT streetcars NSWK = 8 sec, NSFD = 15 sec 10 via interrogator Left Turn Passage Time = 2 sec See back for TSP instructions. MAX1 AMB 10 (Max extension of 10 secs WBLA) ALR 6 Due to restrictions in ATC-1000 firmware 0 SPLIT 0 0 0 version 3.18.2976, phase 2 & 6 splits must be King St programmed as at least 30 during all patterns 2 WIK Fixed at this intersection. FDW 15 MIN POZ activated by TSP re-enabled on January 15, 20221 26 3.3 MAX1 Request Loop (Max extension of 16 secs in AMB ALR 2.2 Green/SDW) 33 SPLIT 3 WLK FDW MIN MAX1 NOT USED AMB ALR SPLIT Dufferin St WLK Fixed FDW MIN POZ activated by 23 MAX1 40 Request Loop
extension of 16 secs in 3.3 2.2 Green/SDW) ALR 47 SPLIT 45 5 WLK Demanded FDW (In Shared Thru-Left Lane) MIN MAX1 6 Reserved for Future Use AMB 3.3 Times to be Determined 4.0 SPLIT King St 6 WLK Fixed FDW 15 MIN MAX1 23 26 3.3 POZ activated by Request Loop (Max extension of 16 secs in AMB AI R 2.2 Green/SDW) SPLIT 7 WLK Demanded FDW (In Shared Thru-Left Lane) MIN MAX1 6 AMB 33 ALR 3.9 14 14 14 Dufferin St 8 WLK Fixed FDW MIN 15 POZ activated by 23 MAX1 AMB Request Loop 26 (Max extension of 16 secs in 3.3 ALR 2.2 Green/SDW) 31 SPLIT 33 CL OF 80 53 24 29 29 45 46 Note

TCSCurrent.xlsx 1/15/2021

TCSCurrent.xlsx 1/15/2021

LOCATION:		Lake Shore Blv	vd & Briti	ish Colu	ımbia Dr							UTC Stages Green Returns
MODE/COMMENT:		SA2-VMG with										B 2&6
TCS/SCN:		1344/30221										C 3&7
CODER/CHECKED BY:		TY										F 4 & 8
DATE CREATED DISTRICT:		July 19, 2018 Toronto and Ea	aet Vork									
COMPUTER SYSTEM:		UTC/SCOOT	ust Tork									
CONTROLLER/CABINET:		Econolite Coba	alt /TS2T	1								
CONTROLLER FIRMWARE	≣:	32.63.10										
CONFLICT: DESIGN WALK SPEED:		Red & Red 1.0 m/s (FDW b	nasad on	full cro	eeina at							
TCC/CHANNEL/DROP:		B/15/2	Jaseu on	Tull Cro	ssing at							
IMPLEMENTATION DATE:		July 14, 2019										
Dual Ring		TP1 UTC/SCOOT	TP2 Split 1	TP3 Split 3	TP4 Split 5	OFF All Other	AM 6:30 - 10:00	PM 15:00 - 19:00	NGHT 23:00-06:30	Indy Time to be	Phase Mode (Fixed, Demanded or	
NEMA Phase		Control		& 4	Spint 3	Times	M - F	M - F	Daily	determined	Callable)	Remarks
(Green Return)	Local Plan					Pattern 1	Pattern 2	Pattern 3	Pattern 4	Pattern 5	* *	
	Split Table WLK		+			Split 1	Split 2	Split 3	Split 4	Split 5		Pedestrian Minimums:
1	FDW											EWWK = 7 secs. EWFD = 15 secs.
	MIN MAX1											NSWK = 7 secs. NSFD = 17 secs. Phases are skippable, callable & extendable by vehicle and/or
(NOT USED	MAX2											pedestrian actuation depending on current operation i.e. under
	AMB ALLR											UTC/Scoot control or TransSuite control.If a vehicle call is received, the minimum time is served. If ongoing vehicle demand
	SPLIT											exists, the vehicle phase is capable of providing vehicle extensions up to the maximum.Extension time is based on vehicle
	WLK	7	7	7	7							demand.NB phase is callable & extendable by vehicle actuation
2	FDW MIN	15 22	15 22	15 22	15 22					1		only.If a pedestrian call is received, the pedestrian minimum will be served.
ACTIVATED	MAX1	38	38	75	25						Dummy Phase activated	100 M M M M M M M M M M M M M M M M M M
ACTIVATED	MAX2 AMB	47	31 4	34 4	47					2	with Phase 6	Vehicle Passage Time = 3 sec. SF #4 enables MAX2 (time to be determined)
	ALLR	3	3	3	3							All plans operate as free. TP1 is used for UTC/Scoot control. TP2
	SPLIT					0	0	0	0	0		is used for Pattern 1 & 2 using MAX1 & MAX2 values respectively for green times for all phases. TP3 is used for Patten 3 & 4 using
	WLK FDW											MAX1 & MAX2 values respectively for green times for all
3	MIN	7	7	7	7						5	phases.TP4 is used for Pattern 5 using MAX1 value for green time for all phases.
ACTIVATED	MAX1 MAX2	29 53	29 68	23 23	52 53						Dummy Phase activated with Phase 7	Ring Structure:
	AMB	4	4	4	4							2 3 4
	ALLR SPLIT	2	2	2	2	0	0	0	0	0		6 7 8 Normal Operations
	WLK	7	7	7	7	- 0		ů	0	0		Signal operates free all times when on local control. Signal is on
	FDW	17	17	17	17				•			pedestrian recall and rests in Phases 2 & 6 waiting for calls. When called from rest, signal serves callable phase(s) following
4	MIN MAX1	24	7 24	7 27	7 24						Dummy Phase activated	phase sequence.
ACTIVATED	MAX2	34	26	24	34				_		with Phase 8	If vehicle demand exists for both the NB & SB (veh and/or ped.)
	AMB ALLR	4	4 2	4 2	4 2							at the end of the WB phase, the NB phase is served first followed by the SB phase. In any given cycle, the signal may serve the NB
	SPLIT					0	0	0	0	0		phase, the SB phase, both in that order, or neither depending on demand. The decision point for the NB phase is at the end of the
	WLK FDW											WBG .The decision point for the SB phase is at the end of the
5	MIN											NBG phase or at the end of the WBG in the absence of the NB phase being served. Any calls received after the respective
(NOT USED)	MAX1 MAX2											decision points will be served after the dwell phase.
	AMB											
	ALLR											Phasing Sequence:
Lake Shore Blvd W	SPLIT WLK	7	7	7	7							Phases 2 & 6 (Dwell Phase)
	FDW	15	15	15	15							Phases 3 & 7
6	MIN MAX1	22 38	22 38	22 75	22 25						Callable by Traficam Detector and/or Pushbuttons;	l
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MAX2	47	31	34	47						Extendable by Traficam	Phases 4 & 8
	AMB	4	4	4	4	1/					Detector	← ↓
	ALLR SPLIT	3	3	3	3	0	0	0	0	0		Indy Operations
British Columbia Dr	WLK											Signal drops from Scoot control and operates free all times under TransSuite control.TP4 used for Pattern 5 using MAX1 values as
	FDW MIN	7	7	7	7							green time for all phases. Signal is on min recall and rests in
(†	MAX1	29	29	23	52				7		Callable & Extendable by	Phases 3 & 7 waiting for calls. When called from rest, signal serves callable phase(s) following phase sequence.
	MAX2 AMB	53 4	68 4	23 4	53 4						Stopbar Loop	If vehicle demand exists for both the SB & WB (veh and/or ped.)
	ALLR	2	2	2	2					_		at the end of the NB phase, the SB phase is served first followed by the WB phase. In any given cycle, the signal may serve the SB
British Columbia Dr	SPLIT WLK	7	7	7	7	0	0	0	0	0		phase, the WB phase, both in that order, or neither depending on
	FDW	17	17	17	17							demand. The decision point for the SB phase is at the end of the NBG .The decision point for the WB phase is at the end of the
8 / 1 1	MIN MAX1	7 24	7 24	7 21	7 24						Callable by Stopbar Loop and/or pushbuttons;	SBG phase or at the end of the NBG in the absence of the SB phase being served. Any calls received after the respective
	MAX2	34	26	24	34						Extendable by Stopbar	decision points will be served after the dwell phase.
	AMB	4	4	4	4						Loop	
SBRA	ALLR SPLIT	2	2	2	2	0	0	0	0	0		During Indy event, WB phase is callable by Traficam and/or
35,01												Pushbuttons, and Extendable by Traficam.
	CL OFF			_ ^ \		0 Free	0 Free	0 Free	0 Free	0 Free		Phasing Sequence: Phases 2 & 6
	3.1					, , 66				1,00		—
				V								Phases 3 & 7
												(Dwell Phase)
												Phases 4 & 8
												~ ↓
Notes:	Signal timing	s were reverted fro	om the te	mp. chai	nges for t	the 2019 Hono	da Indy on July 14	2019.		I	I.	

TCS1344.xlsx 16/07/2019

MODE/COMMENT: SAC-MIG with UPS, PR & RLC (WB) Ranahamil filtihar / August 15, 2019 Ranahamil filtihar /	LOCATION:	Lake	Shore Blvd	W & Strach	an Av/ Rem	embrance Dr	UTC Stages	Green Returns
Collection Col	MODE/COMMENT:	SA2-	VMG with U	PS, PR & RI	Α	2 & 5		
CHECKED BY JOATE : Masoud Rametani / Toronto & East York	TCS#/SCN#				В	2 & 6		
DISTRICE:	CODER / DATE:	Rana	Jamil Iftikha	r / August	С	4 & 8		
DISTRICE:	CHECKED BY / DATE :	Maso	ud Rameza	ni /	F	3 & 7		
Commonwealth Comm	SALES				G	1000 1000 1000		
## CONFILERCABINET: OBSIGN WALK SPEED: MR/LEMENTATION DATE: A mis (FPW based on full crossing @ 1.2 m/s) Phase Motion (Federocename of Callable)	N. 10.00 (10.00	alee ea	MARI PUFERING C			80 (40) (50)		
COMPLICIT:				/ TS2 T1		""		
NEMA Phase (Green Return)	The state of the s			111-1-111				
NEMA Phase (Green Return Local Plan All Other Mark	DESIGN WALK SPEED:	1.0 m	s (FDW bas	sed on full o				
NEMA Phase (Green Return) Coole Plan Times Mark	IMPLEMENTATION DATE:	Janu	ary 16, 2020					
NEMAP Phase (Green Return) February Pattern 1 Pattern 2 Pattern 3 Spill Table Spill 1 Spill 2 Spill 3 Spil							Rema	arks
Split Table Split 1 Split 2 Split 3	NEMA Phase (Green Return)	Local Plan	Times	M-F	M-F	Will Trouble above commission and property and		.0
MUK Flow F								
FDW MAX. 15 MAX. 14 MAX. 15	1	\\\\ \\ \\				Protected/Permissive		
MAX1 15	' /							
MAX2 25							NS ped crossing on V	Vest leg only.
AME 3 AR 3 SPLIT 3 15 16 Section of the control of	│					Stoppar Loop		
ARK 3		1,000						
Lake Store Blod W VILK 7 FOW 22 MAXI 41 MXZ 41 AME 4 AME 4 AME 5 AME 6 AME 6 AME 7 AME 6 AME 7 AME 7 AME 6 AME 7 AME 7 AME 7 AME 7 AME 7 AME 8 AME 8 AME 8 AME 9 A			15		16		seconds. If ongoing v	ehicle demand
Windows Property								
Man	2					Fixed	up to the maximum. It	f a pedestrian call is
MAX								
AMB 4 ALR 2 SPLIT 47 78 U2 Strachan AviRemembrance Dr SPLIT 47 78 U2 Callable by Stopbar Loop, 8 or Plush Button Loop & or Plush Button Left Turn Passage Time = 2 sec Left Turn Passage Time = 2 sec Left Turn Passage Time = 3 sec Left Turn Passage Time = 2 sec Left Turn Passage Time = 3 sec Left Turn Passage Time = 2 sec Left Turn Passage Time = 3 sec Left Turn Passage Time = 2 sec Left Turn Passage Time = 2 sec Left Turn Passage Time = 2 sec Left Turn Passage Time = 3 sec Left Turn Passage Time = 2 sec Left Turn Passage Time = 3 sec Left Turn Passage Time = 2 sec Left Turn Pass	(
Alice 2 Alic						- A	if a pedestrian call is	received. Extension
SPLIT 34		ALR 2						
Callable by Stophar	Strachan Av/Remembrance Dr	SPLIT	47	78	62			
MIN							Left Turn Passage Tir	me = 2 sec
MAX1 37 MAX2 37 AMB 3 ALR 5 5 5 5 5 5 5 5 5								Salar Sa
MAXZ 37 ALR 5 SPLIT 45 45 45 45 MIN 12 MIN 14 MIN 15 MIN 16 MIN 16 MIN 16 MIN 16 MIN 18 MIN 19								
ALR 5 SPLIT 45 45 45 45 45 45 45 45 45 45 45 45 45	$\setminus \ \lor \ \lor$					Remembrance Dr is	3) before serving the	EBLA.
SPLIT					7	one-way SB.		
NB Bike crossing on east leg, callable by ped pushbitton and/or bicycle defector on south leg only AMB 3 ALR 6 SPLIT 21 21 21 21			45	45	45			values (times to be
See back of timing card for operation during Honda lady Flow See back of timing card for operation during Honda lady Flow See back of timing card for operation during Honda lady Flow See back of timing card for operation during Honda lady Flow See back of timing card for operation during Honda lady Flow See back of timing card for operation during Honda lady Flow See back of timing card for operation during Honda lady Flow See back of timing card for operation during Honda lady Flow See back of timing card for operation S	4	WIK					ISM used to re-sync in	n EWG/EWWK only.
MAX2 12 AMB 3 ARR 6 SPLIT 21 21 21 21 21 21 21 2	/ / /					NB Bike crossing on	Ring Structure:	
MAX2 12 AMB 3 ARR 6 SPLIT 21 21 21 21 21 21 21 2	8							
AMB 3 ALR 6 SPLIT 21 21 21 5 WLK FDW MN 6 MAX1 35 MAX2 40 AMB 3 ALR 3 SPLIT 24 31 31 Fully Protected. Callable by Stopbar Loop Second Sequence - Phase 3 Third Sequence - Phase 3 Fixed Fixed Fixed Fixed Fixed Fourth Sequence - Phase 3 Fourth Sequence -	\						56178	
SPLIT 21 21 21 21 21 21 21 2	·	AMB 3						
Fully Protected. Callable/ Extendable by Stopbar Loop MAX 1 35 MAX 2 40 AMB 3 ALR 3 SPLIT 7 NOT USED NOT USED NOT USED WLK FDW MIN 12 MAX 1 37 AMB 3 ALR 5 SPLIT 45 45 45 45 45 45 Fully Protected. Callable/ Extendable by Stopbar Loop Second Sequence - Phase 3 Third Sequence - Phase 4 Fixed Fixed Fixed See back of timing card for operation during Honda Indy File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8. NOT USED OLIVIA 12 MAX 2 12 MAM 3 ALR 6 SPLIT 21 21 21 21 21 21 21 21 21 21 21 21 21			21	21	21			ses 2 & 6
FDW MIN 6 MAX1 35 MAX2 40 AAMB 3 ALR 3 SPLIT 24 31 31 31 Fixed Fixed Shore BNd W WLK 7 FDW 22 MAX2 32 AAMB 4 ALR 2 SPLIT 38 47 47 See back of timing card for operation during Honda Indy File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8. 8 WLK 7 FDW 30 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 45 WLK FDW MIN 12 MAX1 12 MAX2 12 MAX3 12 MAX3 12 MAX4 12 MAX4 12 MAX4 12 MAX4 12 MAX4 12 MAX5 1				21			←	
Min	5			-				
MAX1 35 MAX2 40 AMB 3 ALR 3 SPLIT 24 31 31 Third Sequence - Phase 3								
AMB 3 ALR 3 SPLIT 24 31 31 Third Sequence - Phase 4 WLK 7 FDW 22 MN 29 MAX1 32 MAX2 32 AMB 4 ALR 2 SPLIT 38 47 47 WLK 7 FDW 30 MN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 NOT USED MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144		MAX1 35					Second Sequence - P	hase 3
ALR 3 SPLIT 24 31 31 Third Sequence - Phase 4 WLK 7 FDW 22 MIN 29 MAX1 32 MAX2 32 AMB 4 ALR 2 SPLIT 38 47 47 NOT USED MIN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 NOT USED MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 21 CL 128 144 144						7	Î	
Calcal Shore Blvd W		ALR 3					↓ ▼	
Fixed WLK 7 FDW 29 MAX1 32 MAX2 32 AMB 4 ALR 2 SPLIT 38 47 47	Jaka Shora Dh. d M	SPLIT	24	31	31		Third Sequence - Pha	ise 4
MIN 29 MAX1 32 MAX2 32 AMB 4 ALR 2 SPLIT 38 47 47 WLK 7 FDW 30 MIN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 NOT USED WLK FDW MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144						Fixed	1 2	l
MAX1 32 MAX2 32 AMB 4 ALR 2 SPLIT 38 47 47 NOT USED MIN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 NOT USED MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144	(1					
MAX2 32 AMB 4 ALR 2 SPUIT 38 47 47 VILK 7 FDW 30 MIN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 WLK FDW MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144							Fourth Sequence - Ph	nases 1 & 5
ALR 2 SPLIT 38 47 47 VICK 7 FDW 30 MIN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 NOT USED MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144 CL 128 144 144 See back of timing card for operation during Honda Indy File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8. See back of timing card for operation during Honda Indy File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8. See back of timing card for operation during Honda Indy File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8. See back of timing card for operation during Honda Indy File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8. See back of timing card for operation during Honda Indy File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8.		MAX2 32						provide to 1 Mil Mil
SPLIT 38 47 47 WLK 7 FDW 30 MIN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 NOT USED W MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144							→ ∧▼	
Wuk 7 FDW 30 MiN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45			38	47	47		 -	
File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8. File name on USB stick is 222 On field operation, phase 3 is monitored on load switch 8. WLK FDW MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144	7	WIK 7						rd for operation
MIN 10 MAX1 37 MAX2 37 AMB 3 ALR 5 SPLIT 45 45 45 WLK FDW MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144	' /							ck is 222
8	NOTUSED						On field operation, ph	
8	\ \\						on load switch 8.	
SPLIT 45 45 45 WLK FDW MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144		AMB 3						
8 WLK FDW MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144			45	45	45			
FDW MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 21 CL 128 144 144			40	40	40		1	l
MIN 12 MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 CL 128 144 144	8							
MAX1 12 MAX2 12 AMB 3 ALR 6 SPLIT 21 21 CL 128 144 144	(,,,,,,,,,)							
AMB 3 ALR 6 SPLIT 21 21 CL 128 144 144	NOT USED	MAX1 12						
ALR 6 SPLIT 21 21 CL 128 144 144								
SPLIT 21 21 CL 128 144 144								l
		SPLIT						
	Notes:	ICL	128	144	144			

TCS0222.XLS 17/01/2020

A	LOCATION:		Strac	han Ave 8	k Fleet St /	Manitoba [Or			UTC Stages	Green Returns
Cookers	MODE/COMMENT:						•				
D 3 & 8 September 4, 2018 Toronto and East York Toronto and East Yor	TCS#/SCN#		571/	30341						В	2 & 6
Committee Comm	CODER/CHECKED BY:		TY								
COMPATION PRINTAL PR											and the same of th
## 1	DISTRICT:				ast York					<u>'</u>	Marie Control of the
COUNTING LEAF PREMANDER CONTINUES CO											40 100 100
COMPUTED Compute Com					/ TS2T1					Н	1 & 6
1.0 m/s (FDW based on full crossing at 1.2 m/s Section Secti	SCHOOL STANDARD OF SCHOOL SERVICE STANDARD STANDARD STANDARD STANDARD SCHOOL STANDARD SCHOOL STANDARD SCHOOL SCHOOL SCHOOL SCHOOL STANDARD SCHOOL SCH	₹E:									
BH13	STATE OF THE PROPERTY OF										
Note 1985					ased on fu	ılı crossing	at 1.2 m/s)				
Doal Bing New York All Chies 303 + 100 500 + 200 Time to be Collabole The Coll	the property of the second control of the se	-1									
Common Figure Common C	IMPLEMENTATION DATE		July	14, 2019	Timina	Information					
New Cornes Nature All Other 620 - 1909 1500 2500 7 mine to be determined	F=0.00=0.00	<u></u>			(Se	conds)			Phase Mode		
Times			ļ	A CONTRACTOR OF THE CONTRACTOR	10000000				/Fived Demanded or	Pom	porks
Demanded by SF 43										Keii	iaiks
Committed by SF R2 Pediatrium Mismururs: NOTIO 22 1	(Crossi riolaini)	Loca	l Plan	G/07/99/09/09/09	CD1/00 (70)	VIII.			Ganabic)		
1											
MAN 6 MAX 17 MAX 10 MAX 17 MAX 10 MAX 17 MAX 10										Attitionshipping	
MAXI 7 MAXI 7 MAXI 3	1										
MAY 10 Market 10 Mar											
Add	(Demanded by SF #3		
ALR 1		AMB									parad
Straction Area Fixed Fix		ALLR	1							Exclusive FW Transit Phase	e callable twice per cycle (at
Separation	Ctrools A		7					12			
SEP Fixed SEP Fixed SEP Sequence Fixed SEP SEQ Sequence Fixed SEP SEQ SEQUENCE SEP SEQUENCE SEP SEQUENCE SEP SEQUENCE SEQUENCE SEP SEQUENCE SEQUEN	Stracnan Ave	The state of the s									
Max1 36	2	PROPERTY IN								05 //4 11 1/01/14 (01/	F 775 - 1 - 1 - 1 - 1 - 1 - 1 - 1
MAX2 30 SEPT 4 44 60 60 64 46 SF #2 demands WBLA for CNE (time to be determined)	_ / • ^ \								Fixed	SF #1 enables NBLA for CN	∟ (time to be determined)
SPLIT 44 60 60 64 48 SF #3 demands SBLA for indy (time to be determined) SF #1 enables MAX2 (time to be determined) Overlap A overlap 69 & 61 think har in TiC phase A minute to be determined of the phase of									Tixeu	SF #2 demands WRI A for C	ONE (time to be determined)
SPLIT										or me demands VVBB (16) c	THE (time to be determined)
Victor Common C			4	44	60	60	64	18		SF #3 demands SBLA for In	dy (time to be determined)
Section Communication Co			\rightarrow	44	00	00	04	40		05 //4 11 1443/0 /// /	1 11 : 15
MAXX 7 AAB 3 ALR 1 SPLIT										128	
MAX2 7 AMB 3 ALIR 1 1 12 12 12 12 13 14 14 160 144 14 160 144 14 160 144 14 160 144 144 144 160 144 144 144 160 144 144 144 144 160 144 144 144 144 144 160 144 144	3 / \										
AMB 3 ALIR 1 SPLIT Mannicola Dr Fived Max 32 Max 34 Max 35 Max 36 Max 37 Max 36 Max 37 Max 36 Max 39 Max 30 Max 39 Max 30 Ma									Demanded by SF #2		
ALIR 1 SPUIT	\ ▼ /							A			
SPLIT										A I A	A A
Fixed Fixed 2nd Sequence - TTC 2nd Sequence - TTC 2nd Sequence - TTC 2nd Sequence - TTC 3nd Sequence - Phase 4 & 8 3nd Sequence - TTC 3nd Sequence - TTC 3nd Sequence - TTC 3nd Sequence - Phase 4 & 8 3nd Sequence - TTC							12			」 ↓ ♦ ♠↑	│ ↓ ∀ ♠ î` │
MIN 32 MAX 4 MAX 7 MAX 13 MAX 13 MAX 36 MAX 37 MAX 36 MAX 37 MAX 37 MAX 38 MAX	Manitoba Dr	5000 1009203]	' ' I Ÿ
MAX1 32 AMB 4 ALIR 3 SPLIT 40 40 40 40 40 40 40 4										2nd Sequence - TTC	2nd Sequence - TTC
MAX2 32 AMB 4 ALIR 3 SPLIT 40 40 40 40 40 MAX6 A	4				7					→	_ ←
AMB 4 ALIR 3 SPLIT 40 40 40 40 40 FOW MIN 6 MAX1 7 MAX2 18 AMB 3 AMB 4 ALIR 4 SPLIT 44 60 60 41 60 OVERLAP A OVERLAP A MAX1 14 MAX2 14 MAX2 14 AMB 4 ALIR 4 SPLIT 22 22 22 22 22 22 22 22 22 22 22 22 22				1			1		Fixed	→	├
ALLR 3 40 40 40 40 40 40 40	\		4				1			3rd Sequence - Phases 4 & 8	3rd Sequence - Phases 4 & 8
WLK FDW MIN 6										F 400 000	<u> </u>
FDW				40	40	40	40	40			
Stachan Ave										4th Sequence - TTC	
MAX1 7 MAX2 18 AAMB 3 ALLR 1 AAMB 3 ALLR 4 AALLR 4	5						1		Callable/Evtondable		
MAX 18 All R 1 SPUIT 23 SF#1 enables NBLA SF#1 enables NBLA SF#1 enables NBLA SF#1 enables NBLA SPUIT 1st Sequence Phases 2 & 6 Sequence Phases 3 & 8 Sequence Phases										→	
AMB 3 ALLR 1 SPLIT Strachan Ave WLK 7 FDW 22 MIN 29 MAX1 36 MAX2 39 AMB 3 ALLR 4 SPLIT 44 60 60 41 60 Callable by TTC loops Exclusive EW Transit Phase callable twice per cycle (at the end of NS/EW vehiclle phases). Unused time is given to the subsequent phase green. Fleet St WLK 7 FDW 32 MIN 7 MAX1 14 MAX2 14 AMB 4 ALLR 4 SPLIT 22 22 22 22 22 25 Fleet St WLK 7 FDW 25 MIN 32 MAX1 32 MAX1 32 MAX2 32 AMB 4 ALLR 3 SPLIT 40 40 40 40 52 40 CYCLE 0FSET 128 144 144 160 144	\				1			A V		CNIE DL : 2	FH 0
Strachan Ave	\ '/										5th Sequence - Phases 1 & 6
Strachan Ave					1		23			A A	1
Maintoba Dr for NS ped crossing TTC track operates simultaneously with NS ped crossing TTC track operates simultaneously with NS ped crossing Manitoba Dr.	Strachan Ave	WLK					VI			Ţ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	∀
MAX1 36 MAX2 39 ALLR 4 AMB 3 ALLR 4						CA				, , , , , , , , , , , , , , , , , , ,	100 100 100 100 100 100 100 100 100 100
MAX2 39 AMB 3 ALLR 4 SPLIT	6									2nd Sequence - TTC	
AMB 3 ALLR 4 SPLIT 44 60 60 41 60 Callable by TTC loops Exclusive EW Transit Phase callable twice per cycle (at the end of NS/EW which phases). Unused time is given to the subsequent phase green. Fleet St WLK 7 FDW 25 MIN 32 MAX2 32 AMB 4 ALLR 3 SPLIT 40 40 40 52 40 CYCLE 0FFSET AMB 144 ALLR 3 SPLIT 40 40 40 52 40 With NS ped crossing Manifoba Dr. Callable by TTC loops Exclusive EW Transit Phase callable twice per cycle (at the end of NS/EW where phases). Unused time is given to the subsequent phase green. Sth Sequence - Phases 2 & 5 Sequence - Phases 3 & 8 Sequence - Phases 2 & 5 Sequence - Phases 2 & 5 Sequence - Phases 2 & 5 Sequence - Phases 3 & 8 Sequence - Phases 3 & 8 Sequence - Phases 2 & 5 Sequence - Phases 2 & 5										 	
ALLR 4 SPLIT Fleet St/ Manitoba Dr WLK FDW MIN 7 MAX1 14 MAB 4 ALLR 4 SPLIT 22 22 22 22 22 22 22 22 22 22 22 22 22	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	And the second second								→	
Fleet St/ Manitoba Dr OVERLAP A WLK FDW MIN 7 MAX1 14 MAX2 14 AMB 4 ALLR 4 SPLIT 22 22 22 22 22 22 22 32 32 35 Fleet St MIN 32 MAX1 32 MAX2 32 AMB 4 ALLR 3 SPLIT 40 40 40 40 52 40 CYCLE OFFSET Callable by TTC loops Exclusive EW Transit Phase callable twice per cycle (at the end of NS/EW vehicile phases). Unused time is given to the subsequent phase green. Sth Sequence - Phases 4 & 8 6th Sequence - TTC 6th Sequence - Phases 2 & 5 WLK 7 FDW 25 MIN 32 MAX1 32 MAX2 32 AMB 4 ALLR 3 SPLIT 40 40 40 52 40 CYCLE OFFSET		ALLR								3rd Sequence - Phases 3 & 8]
FDW MilN 7 MAX1 14 MAX2 14 AMB 4 ALLR 4 SPLIT 22 22 22 22 22 22 22	Fly 1 Court			44	60	60	41	60	Callable to TTO		
OVERLAP A MIN 7 MAX1 14 MAX2 14 ANB 4 ALLR 3 SPLIT 40 40 40 40 52 40 CYCLE 128 144 144 160 144 OVERLAP A MIN 7 MAX1 14 MAX2 14 ANB 4 ALLR 3 SPLIT 40 40 40 52 40 CYCLE 128 144 144 160 144 OFFSET MIN 7 MAX1 14 MAX2 14 ANB 4 ALLR 3 SPLIT 40 40 40 52 40	Fleet St/ Manitoba Dr									 	
MAX1 14 MAX2 14 AMB 4 ALLR 4 SPLIT 22 22 22 22 22 22 22 32 32 32	OVERI AD A		7							4th Sequence - Phases 4 & 8	
MAX2 14 AMB 4 ALLR 4 SPLIT 22 22 22 22 22 32 32 32	JULICAF A									·	
AMB 4 ALIR 4 SPLIT 22 22 22 22 22 22 32 32 40 Fixed		MAX2	14								
ALLR 4 SPLIT 22 22 22 22 22 22 32 Subsequent phase green. Sth Sequence - TTC WLK 7 FDW 25 MIN 32 MAX1 32 MAX2 32 AMB 4 ALLR 3 SPLIT 40 40 40 40 52 40 CYCLE OFFSET 128 144 144 160 144 160 144											
Fixed			4	22	22	22	22	22		5th Sequence - TTC	
FDW 25 MIN 32 MAX1 32 MAX2 32 AMB 4 ALLR 3 SPLIT 40 40 40 52 40 CYCLE 0FFSET 128 144 144 160 144 OFFSET 128 144 144 160 144	Fleet St		7	22	22	22	22	22		→ →	
MIN 32 MAX1 32 MAX2 32 AMB 4 ALIR 3 SPLIT 40 40 40 52 40 CYCLE 128 144 144 160 144 OFFSET	T IGET OF									6th Sequence - Phases 2 & 5	
MAX2 32 AMB 4 ALLR 3 SPLIT 40 40 40 52 40 CYCLE 128 144 144 160 144 OFFSET	8	MIN	32							◆ 1 1	
MAX2 32 AMB 4 ALLR 3 SPLIT 40 40 40 52 40 CYCLE 128 144 144 160 144 OFFSET	<>		32						Fixed		
ALLR 3 SPLIT 40 40 40 52 40 CYCLE 128 144 144 160 144 OFFSET	│ 										
SPLIT 40 40 40 52 40 CYCLE 128 144 144 160 144 OFFSET											
CYCLE 128 144 144 160 144 OFFSET				40	40	40	52	40			
OFFSET		OI LII		TU		70	JZ	TU		1	
				128	144	144	160	144			
Notes: If the WBLA & NBLA are activated, SCOOT stages 3 & 6 must be increased to 15 secs (as there are commands in CAST 26 to run the stages at 10 secs to allow region LG to run at a lower cycle length).	Notes:					iges 3 & 6 must b	e increased to 15	secs (as there a	ire commands in CAST 26 to rur	n the stages at 10 secs to allow	

region LG to run at a lower cycle length).
Signal timings were reverted from the temp. changes for the 2018 CNE Event at approx. 9:45 am on September 4, 2018.

Appendix C: Existing, Exhibition Station, 2030 Future Background, TOC Site and 2030 Total Future Traffic Volumes

	118 (6) 42 (74) 592 (317) 112 (113) Oufferin St	42 (23) 144 (93) loe Shuster Way	
Appendix C5: 204 Future Background Volumes: Study Area Northwest quadrant XX A.M. Peak Hour Traffic Volumes A.M. Peak Hour Pedestrian Volumes A.M. Peak Hour Pedestrian Volumes A.M. Peak Hour Conflicting Bike *Missing values indicate bikes were not counted in original TMC LEGEND P.M. Peak Hour Traffic (xx) Volumes P.M. Peak Hour Conflicting Bike	(81) 56 J (458) 737 - (54) 86 1 (3) 73 * 203 (317) ** ** ** ** ** ** ** ** **	King St W (647) 852 - (1) 10 *	* 1 () t 79 (131) - 628 (907) King St W
	128) (178) (145) (178) (178) (178) (178) (178) (178) (178) (178)		Liberty St
	(5) 5 1 (4) (2) 6 1 338 (90) (2) (3) 1 1 2 338 (90) (4) (148) 2 1 1 2 338 (90)	Liberty St	(1) (117)
		Mowat Ave	Site B (west side)
		19 (1) - 43 (129)	Total (10) 1 (10) Station Entrance
	(12)	(48) 39 - (48) 37) 1 %	(167) (130) (167) (130) (167) (130) (167) (130) (167) (130) (167) (130) (144)
	(3) 75 * T = 36	Liberty New St	## Westbound bus bays Match line to Line 1
	$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	Rail Co	orridor 9

Match line to Dufferin Street Rail Corridor South
Station
Headhouse Appendix C7: 2041 Future Station
(OL plus GO) station traffic, plus
additional development traffic:
Study Area Southwest quadrant P.M. Peak Hour Traffic A.M. Peak Hour Traffic Pedestrian Volumes P.M. Peak Hour *Missing values indicate bikes were not counted in original TMC British Columbia Rd ↑
↓
↓
↓
↓ Lakeshore Blvd

% ← ↓ → Appendix C8: 2041 Total Future
Traffic: Study Area Northwest
quadrant LEGEND

A.M. Peak Hour Traffic

(xx) King St W P.M. Peak Hour Traffic (xx) King St W Volumes (653) 862 → [™] ← → 206 (167) P.M. Peak Hour A.M. Peak Hour Pedestrian Volumes Pedestrian Volumes (5) 15 % P.M. Peak Hour Conflicting Bike A.M. Peak Hour + ↑ → ఈ *Missing values indicate bikes were not counted in original TMC Liberty St **Liberty New St**

Rail Corridor

Appendix D: Detailed Synchro Results

Lane Group

	۶	→	•	•	←	•	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	^		7	^					7	ર્ન	7
Traffic Volume (vph)	402	3208	5	8	960	0	0	0	0	187	4	188
Future Volume (vph)	402	3208	5	8	960	0	0	0	0	187	4	188
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Storage Length (m)	60.0		0.0	60.0		50.0	0.0		0.0	140.0		50.0
Storage Lanes	1		0	1		0	0		0	1		1
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor	1.00	1.00										0.96
Frt												0.850
Flt Protected	0.950			0.950						0.950	0.954	
Satd. Flow (prot)	1452	4932	0	1685	4885	0	0	0	0	1585	1687	1507
Flt Permitted	0.175			0.089						0.950	0.954	
Satd. Flow (perm)	267	4932	0	158	4885	0	0	0	0	1585	1687	1448
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)												176
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		310.3			196.6			116.5			205.6	
Travel Time (s)		18.6			11.8			10.5			18.5	
Confl. Peds. (#/hr)	5	10.0	7	7	11.0	5	24	10.0			10.0	24
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	16%	4%	0%	0%	5%	33%	0%	0%	0%	1%	0%	0%
Adj. Flow (vph)	447	3564	6	9	1067	0	0	0	0	208	4	209
Shared Lane Traffic (%)			-	-		-	-	-	-	49%		
Lane Group Flow (vph)	447	3570	0	9	1067	0	0	0	0	106	106	209
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	2011	3.0	· ug.ic	2010	3.0	. ug.ii	Lon	3.0	. ug.it	2011	3.0	. ug.ii
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.09	1.01	1.09	1.01	1.01	1.01	1.09	1.01	1.09
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2					1	2	1
Detector Template	Left	Thru		Left	Thru					Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5					6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8					6.1	1.8	6.1
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex					CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel	0. 2.	O. LA		0. Ex	O. LA					0. Ex	0. LX	O. Ex
Detector 1 Extend (s)	0.0	0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0					0.0	0.0	0.0
Detector 2 Position(m)	0.0	28.7		0.0	28.7					0.0	28.7	0.0
Detector 2 Size(m)		1.8			1.8						1.8	
Detector 2 Type		CI+Ex			CI+Ex						CI+Ex	
Detector 2 Channel		OITLX			OITEX						OITEX	
Delector & Challie												

Lane Group	03
Laneconfigurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (m)	
Storage Length (m)	
Storage Lanes	
Taper Length (m)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (k/h)	
Link Distance (m)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Peak Hour Factor	
Heavy Vehicles (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(m)	
Link Offset(m)	
Crosswalk Width(m)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (k/h)	
Number of Detectors	
Detector Template	
Leading Detector (m)	
Trailing Detector (m)	
Detector 1 Position(m)	
Detector 1 Size(m)	
Detector 1 Type	
Detector 1 Channel	
Detector 1 Extend (s)	
Detector 1 Queue (s)	
Detector 1 Delay (s)	
Detector 2 Position(m)	
Detector 2 Size(m)	
Detector 2 Type	
Detector 2 Channel	

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 1 Existing AM 05/06/2014 HDR Corporation

Synchro 10 Report Page 2

	•	-	*	•	•	•	1	Ī	~	>	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)		0.0			0.0						0.0	
Turn Type	pm+pt	NA		Perm	NA					Perm	NA	pm+ov
Protected Phases	5	2			6						4	5
Permitted Phases	2			6						4		4
Detector Phase	5	2		6	6					4	4	5
Switch Phase												
Minimum Initial (s)	6.0	30.0		30.0	30.0					7.0	7.0	6.0
Minimum Split (s)	12.0	36.0		36.0	36.0					44.0	44.0	12.0
Total Split (s)	33.0	83.0		50.0	50.0					45.0	45.0	33.0
Total Split (%)	22.9%	57.6%		34.7%	34.7%					31.3%	31.3%	22.9%
Maximum Green (s)	27.0	77.0		44.0	44.0					38.0	38.0	27.0
Yellow Time (s)	3.0	4.0		4.0	4.0					3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		2.0	2.0					4.0	4.0	3.0
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0					-1.0	-1.0	-1.0
Total Lost Time (s)	5.0	5.0		5.0	5.0					6.0	6.0	5.0
Lead/Lag	Lead			Lag	Lag					Lead	Lead	Lead
Lead-Lag Optimize?	Yes			Yes	Yes					Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0					3.0	3.0	3.0
Recall Mode	None	Max		Max	Max					None	None	None
Walk Time (s)		7.0		7.0	7.0					7.0	7.0	
Flash Dont Walk (s)		23.0		23.0	23.0					30.0	30.0	
Pedestrian Calls (#/hr)		0		0	0					0	0	
Act Effct Green (s)	78.1	78.1		45.1	45.1					13.1	13.1	42.1
Actuated g/C Ratio	0.76	0.76		0.44	0.44					0.13	0.13	0.41
v/c Ratio	0.84	0.95		0.13	0.50					0.52	0.49	0.29
Control Delay	33.9	18.3		24.1	21.8					51.1	49.3	4.9
Queue Delay	0.0	0.0		0.0	0.0					0.0	0.0	0.0
Total Delay	33.9	18.3		24.1	21.8					51.1	49.3	4.9
LOS	С	В		С	С					D	D	Α
Approach Delay		20.1			21.8						27.7	
Approach LOS		С			С						С	
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 10	2.2											
Natural Cycle: 150												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 0.95												
Intersection Signal Delay:	21.0			lr	ntersection	LOS: C						
Intersection Capacity Utiliz	ation 120.0°	%		10	CU Level	of Service	Н					
Analysis Period (min) 15												
Splits and Phases: 222:	Lakeshore	Blvd & Str	achan Av	'e								

Splits and Phases:	222: Lakeshore Blvd & Strachan A	Ave	
≠ _{Ø2}		↓ Ø4	#1 ø3
83 s		45 s	16 s
₹ Ø5	▼ Ø5		
33 s	50 s		

Lane Group	Ø3
Detector 2 Extend (s)	
Turn Type	
Protected Phases	3
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	7.0
Minimum Split (s)	15.0
Total Split (s)	16.0
Total Split (%)	11%
Maximum Green (s)	8.0
Yellow Time (s)	3.0
All-Red Time (s)	5.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lag
Lead-Lag Optimize?	Yes
Vehicle Extension (s)	3.0
Recall Mode	None
Walk Time (s)	
Flash Dont Walk (s)	
Pedestrian Calls (#/hr)	
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
I-t	
Intersection Summary	

Queues

222: Lakeshore Blvd & Strachan Ave

12/18/2020

	•	-	•	•	-	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	SBL	SBT	SBR	
Lane Group Flow (vph)	447	3570	9	1067	106	106	209	
v/c Ratio	0.84	0.95	0.13	0.50	0.52	0.49	0.29	
Control Delay	33.9	18.3	24.1	21.8	51.1	49.3	4.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	33.9	18.3	24.1	21.8	51.1	49.3	4.9	
Queue Length 50th (m)	52.2	181.5	1.0	53.9	20.9	20.8	3.5	
Queue Length 95th (m)	#116.0	#305.7	5.1	71.7	38.4	38.1	15.5	
Internal Link Dist (m)		286.3		172.6		181.6		
Turn Bay Length (m)	60.0		60.0		140.0		50.0	
Base Capacity (vph)	529	3768	69	2153	605	644	716	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.84	0.95	0.13	0.50	0.18	0.16	0.29	

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 5

HCM Signalized Intersection Capacity Analysis 222: Lakeshore Blvd & Strachan Ave

12/18/2020

ZZZ. Lakeshore bi	J	→	`	•	+	•	•	†	<i>></i>	\	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተኈ		ሻ	^					ሻ	4	1
Traffic Volume (vph)	402	3208	5	8	960	0	0	0	0	187	4	188
Future Volume (vph)	402	3208	5	8	960	0	0	0	0	187	4	188
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Total Lost time (s)	5.0	5.0		5.0	5.0					6.0	6.0	5.0
Lane Util. Factor	1.00	0.91		1.00	0.91					0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00					1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00					1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00					1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00					0.95	0.95	1.00
Satd. Flow (prot)	1452	4931		1685	4885					1585	1687	1492
Flt Permitted	0.17	1.00		0.09	1.00					0.95	0.95	1.00
Satd. Flow (perm)	267	4931		157	4885					1585	1687	1492
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	447	3564	6	9	1067	0	0	0	0	208	4	209
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	105
Lane Group Flow (vph)	447	3570	0	9	1067	0	0	0	0	106	106	104
Confl. Peds. (#/hr)	5		7	7		5	24					24
Heavy Vehicles (%)	16%	4%	0%	0%	5%	33%	0%	0%	0%	1%	0%	0%
Turn Type	pm+pt	NA		Perm	NA					Perm	NA	pm+ov
Protected Phases	5	2			6						4	5
Permitted Phases	2			6						4		4
Actuated Green, G (s)	77.1	77.1		44.1	44.1					12.1	12.1	39.1
Effective Green, g (s)	78.1	78.1		45.1	45.1					13.1	13.1	41.1
Actuated g/C Ratio	0.76	0.76		0.44	0.44					0.13	0.13	0.40
Clearance Time (s)	6.0	6.0		6.0	6.0					7.0	7.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0					3.0	3.0	3.0
Lane Grp Cap (vph)	528	3768		69	2155					203	216	600
v/s Ratio Prot	0.23	c0.72			0.22							0.05
v/s Ratio Perm	0.41			0.06						c0.07	0.06	0.02
v/c Ratio	0.85	0.95		0.13	0.50					0.52	0.49	0.17
Uniform Delay, d1	19.1	10.3		16.9	20.4					41.6	41.4	19.6
Progression Factor	1.00	1.00		1.00	1.00					1.00	1.00	1.00
Incremental Delay, d2	11.9	6.7		3.9	0.8					2.4	1.8	0.1
Delay (s)	31.0	17.0		20.8	21.2					44.0	43.2	19.8
Level of Service	С	В		С	С					D	D	В
Approach Delay (s)		18.6			21.2			0.0			31.8	
Approach LOS		В			С			Α			С	
Intersection Summary												
HCM 2000 Control Delay			20.1	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		1.03									
Actuated Cycle Length (s)			102.2		um of lost				24.0			
Intersection Capacity Utiliza	ation		120.0%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

HDR Corporation

Page 8

	•	→	•	•	+	•	•	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	fa fa		ሻ	1	
Traffic Volume (vph)	0	501	64	66	438	40	81	258	106	27	140	20
Future Volume (vph)	0	501	64	66	438	40	81	258	106	27	140	20
Ideal Flow (vphpl)	1900	1900	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	25.0		0.0	25.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.94			0.98		0.77	0.97		0.96	0.96	
Frt		0.985			0.990			0.956			0.981	
Flt Protected					0.994		0.950			0.950		
Satd. Flow (prot)	0	1273	0	0	1430	0	1458	1486	0	1516	1565	0
Flt Permitted					0.703		0.621			0.326		
Satd. Flow (perm)	0	1273	0	0	997	0	731	1486	0	498	1565	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		12			8			29			10	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		255.2			358.6			424.1			379.9	
Travel Time (s)		18.4			25.8			38.2			34.2	
Confl. Peds. (#/hr)	41		315	315		41	162		92	92	•	162
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	0%	9%	28%	100%	7%	5%	4%	6%	3%	0%	2%	0%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	0	583	74	77	509	47	94	300	123	31	163	23
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	657	0	0	633	0	94	423	0	31	186	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	J .		0.0	J .		3.0			3.0	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.32	1.16	1.16	1.13	1.16	1.25	1.16	1.16	1.25	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel				-						-		
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Existing AM 05/06/2014	Synchro 10 Report
HDR Corporation	Page 7

	•	-	•	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	20.0	20.0		20.0	20.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		27.0	27.0		27.0	27.0	
Total Split (s)	46.0	46.0		46.0	46.0		34.0	34.0		34.0	34.0	
Total Split (%)	57.5%	57.5%		57.5%	57.5%		42.5%	42.5%		42.5%	42.5%	
Maximum Green (s)	40.0	40.0		40.0	40.0		28.0	28.0		28.0	28.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-3.0		-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		5.0			3.0		5.0	5.0		5.0	5.0	
Lead/Lag										-		
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		14	14		31	31		100	100	
Act Effct Green (s)	100	41.0			43.0		29.0	29.0		29.0	29.0	
Actuated g/C Ratio		0.51			0.54		0.36	0.36		0.36	0.36	
v/c Ratio		1.00			1.17		0.36	0.76		0.17	0.32	
Control Delay		56.5			115.3		23.5	31.5		26.9	26.7	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		56.5			115.3		23.5	31.5		26.9	26.7	
LOS		E			F		C	C		C	C	
Approach Delay		56.5			115.3		Ŭ	30.1		- J	26.7	
Approach LOS		E			F			C			C	
••					•							
Intersection Summary Area Type:	CBD											
Cycle Length: 80	CDD											
Actuated Cycle Length: 80	١											
Offset: 42 (53%), Reference		2.ERTI a	nd 6·MRT	TI Start	of 1et Gro	on						
Natural Cycle: 75	bed to phase	Z.LDIL a	ilu U.VVD	i L, Stait	UI ISL GIE	CII						
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 1.17	Julullaleu											
Intersection Signal Delay:	65.0				ntersection	100·E						
Intersection Signal Delay.)/			CU Level							
	allon 120.7	/0		11	50 Level (or Service	, п					
Analysis Period (min) 15												
Splits and Phases: 538:	Strachan A	ve & King	St									
→ø2 (R)						- 4	Ø4					
46 s						34 s	υ τ					
4						J-15						
Ø6 (R)						#)	Ø8					
46 s						34 s					, <u> </u>	
HDR Corporation												Page 8

Queues

538: Strachan Ave & King St

12/18/2020

	-	-	4	†	-	. ↓
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	657	633	94	423	31	186
v/c Ratio	1.00	1.17	0.36	0.76	0.17	0.32
Control Delay	56.5	115.3	23.5	31.5	26.9	26.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.5	115.3	23.5	31.5	26.9	26.7
Queue Length 50th (m)	92.7	~116.5	10.3	51.8	4.5	27.4
Queue Length 95th (m)	#154.0	#157.7	21.6	#80.7	m7.4	m41.6
Internal Link Dist (m)	231.2	334.6		400.1		355.9
Turn Bay Length (m)			25.0		25.0	
Base Capacity (vph)	658	539	264	557	180	573
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.00	1.17	0.36	0.76	0.17	0.32

Intersection Summary

 Existing AM 05/06/2014
 Synchro 10 Report

 HDR Corporation
 Page 9

HCM Signalized Intersection Capacity Analysis 538: Strachan Ave & King St

v/c Ratio

Delay (s)

Uniform Delay, d1

Progression Factor

Level of Service

Approach LOS

Approach Delay (s)

Incremental Delay, d2

Movement EBL EBT WBT NBT Lane Configurations Traffic Volume (vph) 501 438 258 Future Volume (vph) 0 501 64 66 438 40 81 258 106 27 140 20 Ideal Flow (vphpl) 1900 1900 1900 1900 2150 1900 1900 1900 1900 1900 1900 1900 3.5 3.5 Lane Width 3.5 3.5 3.5 3.5 3.0 3.5 3.5 3.0 3.5 3.5 Total Lost time (s) 5.0 5.0 5.0 5.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 Frpb, ped/bikes 0.99 0.97 1.00 0.96 Flpb, ped/bikes 1.00 0.99 0.77 1.00 0.96 1.00 0.98 0.99 1.00 0.96 1.00 0.98 Flt Protected 1.00 0.99 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1273 1409 1118 1487 1450 1566 Flt Permitted 1.00 0.70 0.62 1.00 0.33 1.00 1273 497 1566 Satd. Flow (perm) 996 731 1487 0.86 0.86 0.86 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 583 163 Adj. Flow (vph) 509 47 94 300 123 23 31 RTOR Reduction (vph) Λ 6 n 4 0 n 18 n n 6 Lane Group Flow (vph) 651 629 180 41 315 162 162 Confl. Peds. (#/hr) 315 41 92 92 Heavy Vehicles (%) 28% 100% 4% 3% 0% 0% 5% 0% 9% 7% 6% 2% Bus Blockages (#/hr) 24 24 24 24 24 24 0 0 0 0 Turn Type NA Perm NA Perm NA Perm NA Protected Phases 2 6 4 8 Permitted Phases Actuated Green, G (s) 40.0 40.0 28.0 28.0 28.0 28.0 Effective Green, q (s) 41.0 43.0 29.0 29.0 29.0 29.0 Actuated g/C Ratio 0.51 0.54 0.36 0.36 0.36 0.36 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 652 535 264 539 180 567 v/s Ratio Prot 0.51 c0.27 0.11 v/s Ratio Perm c0.63 0.13 0.06

12/18/2020

Intersection Summary			
HCM 2000 Control Delay	63.2	HCM 2000 Level of Service	Е
HCM 2000 Volume to Capacity ratio	1.03		
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	10.0
Intersection Capacity Utilization	120.7%	ICU Level of Service	Н
Analysis Period (min)	15		
c Critical Lane Group			

1.18

18.5

0.81

96.7

111.8

111.8

0.36

18.7

1.00

3.7

22.4

0.75

22.3

1.00

9.3

31.6

С

29.9

0.17

17.3

1.37

1.6

25.4

0.32

18.4

1.43

27.4

27.1

1.2

С

1.00

19.5

1.00

34.9

54.4

D

D

54.4

Existing AM 05/06/2014 Synchro 10 Report HDR Corporation Page 10

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

12/18/2020

	ᄼ	-	•	•	—	•	4	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			413	
Traffic Volume (vph)	0	551	50	0	357	94	0	192	62	112	360	42
Future Volume (vph)	0	551	50	0	357	94	0	192	62	112	360	42
Ideal Flow (vphpl)	1900	2150	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95
Ped Bike Factor		0.98			0.98			0.98			0.98	
Frt		0.989			0.972			0.967			0.988	
Flt Protected											0.989	
Satd. Flow (prot)	0	1691	0	0	1392	0	0	1346	0	0	2844	0
Flt Permitted											0.799	
Satd. Flow (perm)	0	1691	0	0	1392	0	0	1346	0	0	2271	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		8			21			25			12	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		291.1			316.7			212.5			385.1	
Travel Time (s)		21.0			22.8			15.3			27.7	
Confl. Peds. (#/hr)	65		97	97		65	98		42	42		98
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	5%	4%	10%	2%	4%	7%	8%	12%	0%	3%	9%	7%
Bus Blockages (#/hr)	12	12	12	24	24	24	12	20	20	0	8	8
Adj. Flow (vph)	0	641	58	0	415	109	0	223	72	130	419	49
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	699	0	0	524	0	0	295	0	0	598	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	J .		0.0	J .		0.0	J -		0.0	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.06	1.16	1.16	1.32	1.16	1.16	1.29	1.16	1.16	1.18	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Turn Type		NA			NA			NA		Perm	NA	
Protected Phases		2			6		3	8			4	
Permitted Phases	2			6			8			4		
Minimum Split (s)	27.0	27.0		27.0	27.0		10.0	27.0		27.0	27.0	
Total Split (s)	41.0	41.0		41.0	41.0		11.0	39.0		28.0	28.0	
Total Split (%)	51.3%	51.3%		51.3%	51.3%		13.8%	48.8%		35.0%	35.0%	
Maximum Green (s)	35.0	35.0		35.0	35.0		7.0	33.0		22.0	22.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		1.0	2.0		2.0	2.0	
Lost Time Adjust (s)	2.0	-3.0		2.0	-1.0		1.0	-1.0		2.0	-1.0	
Total Lost Time (s)		3.0			5.0			5.0			5.0	
Lead/Lag		0.3			0.3		Lead	0.0		Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Walk Time (s)	7.0	7.0		7.0	7.0		. 00	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			14.0		14.0	14.0	
Pedestrian Calls (#/hr)	32	32		22	22			33		14.0	14.0	
Act Effct Green (s)	ŲŽ.	38.0			36.0			34.0			23.0	
Actuated g/C Ratio		0.48			0.45			0.42			0.29	
, lotation g/O I tallo		U. T U			U.7J			U.7Z			0.23	

Existing AM 05/06/2014 HDR Corporation Page 11 Lanes, Volumes, Timings 539: Dufferin St & King St

	•	-	•	•	←	•	1	Ť		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
v/c Ratio		0.87			0.82			0.50			0.90	
Control Delay		26.6			23.6			13.3			46.7	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		26.6			23.6			13.3			46.7	
LOS		С			С			В			D	
Approach Delay		26.6			23.6			13.3			46.7	
Approach LOS		С			С			В			D	
Intersection Summary												

Area Type: CBD
Cycle Length: 80
Actuated Cycle Length: 80
Offset: 15 (19%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green

Natural Cycle: 70
Control Type: Pretimed
Maximum v/c Ratio: 0.90
Intersection Signal Delay: 29.7
Intersection Capacity Utilization 78.6%
Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service D

Splits and Phases: 539: Dufferin St & King St

539: Dufferin St & King St

12/18/2020

	-	•	Ī	¥
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	699	524	295	598
v/c Ratio	0.87	0.82	0.50	0.90
Control Delay	26.6	23.6	13.3	46.7
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	26.6	23.6	13.3	46.7
Queue Length 50th (m)	89.4	29.9	20.4	45.0
Queue Length 95th (m)	#144.1	#107.9	m19.2	#69.7
Internal Link Dist (m)	267.1	292.7	188.5	361.1
Turn Bay Length (m)				
Base Capacity (vph)	807	637	586	661
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.87	0.82	0.50	0.90

Intersection Summary

HCM Signalized Intersection Capacity Analysis 539: Dufferin St & King St

4 4 Movement EBL EBT **41**360 Lane Configurations Traffic Volume (vph) 551 357 192 Future Volume (vph) 0 551 50 0 357 94 0 192 62 112 360 42 Ideal Flow (vphpl) 1900 2150 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 3.0 5.0 5.0 5.0 Lane Util. Factor 1.00 1.00 1.00 0.95 Frpb, ped/bikes 0.98 0.98 0.98 0.99 Flpb, ped/bikes 1.00 1.00 1.00 0.99 Frt 0.99 0.97 0.97 0.99 Flt Protected 1.00 1.00 1.00 0.99 Satd. Flow (prot) 1691 1391 1346 2811 Flt Permitted 1.00 1.00 1.00 0.80 Satd. Flow (perm) 1691 1391 1346 2271 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 Adj. Flow (vph) 0 641 415 109 223 72 130 419 RTOR Reduction (vph) 12 14 512 Lane Group Flow (vph) 281 589 0 695 n 0 0 0 0 Confl. Peds. (#/hr) 4% 4% 12% 9% Heavy Vehicles (%) 5% 10% 2% 8% 0% 3% 7% 7% Bus Blockages (#/hr) 12 12 12 24 24 24 12 20 20 Turn Type NA NA NA NA Perm Protected Phases 2 8 Permitted Phases 8 4 Actuated Green, G (s) 35.0 35.0 33.0 22.0 Effective Green, g (s) 38.0 36.0 34.0 23.0 Actuated g/C Ratio 0.48 0.45 0.42 0.29 Clearance Time (s) 6.0 6.0 6.0 6.0 803 572 Lane Grp Cap (vph) 625 652 v/s Ratio Prot c0.41 0.37 c0.21 v/s Ratio Perm c0.26 v/c Ratio 0.87 0.82 0.49 0.90 Uniform Delay, d1 18.7 19.2 16.7 27.4 Progression Factor 0.71 0.74 0.82 1.00

12/18/2020

Apploacificos	U	U	ь	D
Intersection Summary				
HCM 2000 Control Delay	28.7	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.86			
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	13.0	
Intersection Capacity Utilization	78.6%	ICU Level of Service	D	
Analysis Period (min)	15			
Analysis Period (min)	15			

8.4

22.5

22.5

С

0.3

14.0

14.0

18.3

45.7

45.7

D

11.7

25.0

25.0

С

Incremental Delay, d2

Delay (s)

Level of Service

Approach Delay (s)

Existing AM 05/06/2014 Synchro 10 Report HDR Corporation Page 13 Existing AM 05/06/2014 Synchro 10 Report HDR Corporation Page 14

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

c Critical Lane Group

	۶	→	•	€	+	4	1	†	~	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4			ની	7	ሻ	4		ሻ	4	
Traffic Volume (vph)	91	85	50	119	56	89	83	232	182	49	198	48
Future Volume (vph)	91	85	50	119	56	89	83	232	182	49	198	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	25.0		0.0	0.0		50.0	30.0		0.0	25.0		0.0
Storage Lanes	1		0	0		1	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.97	0.97			0.97	0.93	0.97	0.96			0.99	
Frt		0.944				0.850		0.934			0.971	
Flt Protected	0.950				0.967		0.950			0.950		
Satd. Flow (prot)	1589	1660	0	0	1682	1436	1652	1647	0	1620	1721	0
Flt Permitted	0.592				0.706		0.581			0.429		
Satd. Flow (perm)	960	1660	0	0	1194	1339	980	1647	0	731	1721	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		21				152		31			10	
Link Speed (k/h)		30			50	.02		40			40	
Link Distance (m)		143.4			229.0			205.6			241.4	
Travel Time (s)		17.2			16.5			18.5			21.7	
Confl. Peds. (#/hr)	14	11.2	16	16	10.0	14	17	10.0	18	18	21.7	17
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	6%	5%	2%	0%	25%	5%	2%	5%	0%	4%	5%	2%
Adj. Flow (vph)	101	94	56	132	62	99	92	258	202	54	220	53
Shared Lane Traffic (%)		0.	00	.02		00	02	200		٠.	220	00
Lane Group Flow (vph)	101	150	0	0	194	99	92	460	0	54	273	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	3.0	rugiit	Loit	3.0	rugiit	Loit	3.0	rugiit	Loit	3.0	rugiii
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.09	1.01	1.01	1.01	1.01	1.09	1.09	1.01	1.01	1.09	1.01	1.01
Turning Speed (k/h)	24	1.01	1.01	24	1.01	1.03	24	1.01	1.01	24	1.01	1.01
Number of Detectors	1	2	14	1	2	1	1	2	14	1	2	14
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5	6.1	6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8	6.1	6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex		Cl+Ex	CI+Ex	
	CITEX	CITEX		CITEX	CITEX	CITEX	CITEX	CITEX		CITEX	CITEX	
Detector 1 Channel Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
\ /	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0			0.0		0.0	0.0			0.0		
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type Detector 2 Channel		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Lane Group	Ø10	Ø16
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Ideal Flow (vphpl)		
Lane Width (m)		
Storage Length (m)		
Storage Lanes		
Taper Length (m)		
Lane Util. Factor		
Ped Bike Factor		
Frt		
Flt Protected		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Right Turn on Red		
Satd. Flow (RTOR)		
Link Speed (k/h)		
Link Distance (m)		
Travel Time (s)		
Confl. Peds. (#/hr)		
Peak Hour Factor		
Heavy Vehicles (%)		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Enter Blocked Intersection		
Lane Alignment		
Median Width(m)		
Link Offset(m)		
Crosswalk Width(m)		
Two way Left Turn Lane		
Headway Factor		
Turning Speed (k/h)		
Number of Detectors		
Detector Template		
Leading Detector (m)		
Trailing Detector (m)		
Detector 1 Position(m)		
Detector 1 Size(m)		
Detector 1 Type		
Detector 1 Channel		
Detector 1 Extend (s)		
Detector 1 Queue (s)		
Detector 1 Delay (s)		
Detector 2 Position(m)		
Detector 2 Size(m)		
Detector 2 Type		
Detector 2 Channel		

Existing AM 05/06/2014 HDR Corporation

Synchro 10 Report Page 16

	•	-	•	•	←	•	1	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	25.0	25.0		25.0	25.0	25.0	40.0	40.0		40.0	40.0	
Minimum Split (s)	32.0	32.0		32.0	32.0	32.0	47.0	47.0		47.0	47.0	
Total Split (s)	48.0	48.0		48.0	48.0	48.0	59.0	59.0		59.0	59.0	
Total Split (%)	33.3%	33.3%		33.3%	33.3%	33.3%	41.0%	41.0%		41.0%	41.0%	
Maximum Green (s)	41.0	41.0		41.0	41.0	41.0	52.0	52.0		52.0	52.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lost Time Adjust (s)	-1.0	-1.0		0.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	Max	Max		Max	Max	
	7.0											
Walk Time (s)		7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	14.0	14.0		14.0	14.0	14.0	14.0	14.0 0		14.0	14.0 0	
Pedestrian Calls (#/hr)		0		U			-	-		_		
Act Effct Green (s)	26.8	26.8			26.8	26.8	53.0 0.58	53.0		53.0	53.0	
Actuated g/C Ratio	0.29	0.29			0.29	0.29		0.58		0.58	0.58	
v/c Ratio	0.36	0.30			0.56	0.20	0.16	0.48		0.13	0.27	
Control Delay	30.1	23.4			34.6	2.0	10.3	12.7		10.2	10.4	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.1		0.0	0.0	
Total Delay	30.1	23.4			34.6	2.0	10.3	12.8		10.2	10.4	
LOS	С	С			С	Α	В	В		В	В	
Approach Delay		26.1			23.6			12.3			10.4	
Approach LOS		С			С			В			В	
Intersection Summary												
Area Type:	Other											
Cycle Length: 144	_											
Actuated Cycle Length: 91	.8											
Natural Cycle: 100												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 0.56												
Intersection Signal Delay:					ntersectio							
Intersection Capacity Utiliz	ation 125.6°	%		I	CU Level	of Service	e H					
Analysis Period (min) 15												
Splits and Phases: 571:	Strachan A	ve & Cana	da Blvd/l	Fleet St								
₫ _{@2}				001		<u>≯</u> 04						

1 ø₂	9 ø10	- 204	
59 s	19 s	48 s	
Ø6		Ø8	● ø16
59 s		48 s	18 s

Lanes, Volumes, Timings 571: Strachan Ave & Canada Blvd/Fleet St

Lane Group	Ø10	Ø16
Detector 2 Extend (s)		
Turn Type		
Protected Phases	10	16
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	9.0	9.0
Total Split (s)	19.0	18.0
Total Split (%)	13%	13%
Maximum Green (s)	11.0	10.0
Yellow Time (s)	4.0	4.0
All-Red Time (s)	4.0	4.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	3.0
Recall Mode	None	None
Walk Time (s)		
Flash Dont Walk (s)		
Pedestrian Calls (#/hr)		
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Intersection Summary		
intersection Summary		

Queues

571: Strachan Ave & Canada Blvd/Fleet St

12/18/2020

	•	-	←	*	4	†	-	↓	
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	101	150	194	99	92	460	54	273	
v/c Ratio	0.36	0.30	0.56	0.20	0.16	0.48	0.13	0.27	
Control Delay	30.1	23.4	34.6	2.0	10.3	12.7	10.2	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	
Total Delay	30.1	23.4	34.6	2.0	10.3	12.8	10.2	10.4	
Queue Length 50th (m)	14.1	17.4	28.9	0.0	6.9	39.7	4.0	21.0	
Queue Length 95th (m)	28.2	32.8	50.4	3.6	15.7	69.3	10.4	38.0	
Internal Link Dist (m)		119.4	205.0			181.6		217.4	
Turn Bay Length (m)	25.0			50.0	30.0		25.0		
Base Capacity (vph)	439	770	546	694	565	964	421	997	
Starvation Cap Reductn	0	0	0	0	0	33	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.19	0.36	0.14	0.16	0.49	0.13	0.27	
Intersection Summary									

 Existing AM 05/06/2014
 Synchro 10 Report

 HDR Corporation
 Page 19

HCM Signalized Intersection Capacity Analysis 571: Strachan Ave & Canada Blvd/Fleet St

12/18/2020

	•	→	\rightarrow	•	←	•	4	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.			ર્ન	7	*	ĥ		7	f.	
Traffic Volume (vph)	91	85	50	119	56	89	83	232	182	49	198	48
Future Volume (vph)	91	85	50	119	56	89	83	232	182	49	198	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.98			1.00	0.95	1.00	0.97		1.00	0.99	
Flpb, ped/bikes	0.98	1.00			0.98	1.00	0.98	1.00		0.98	1.00	
Frt	1.00	0.94			1.00	0.85	1.00	0.93		1.00	0.97	
Flt Protected	0.95	1.00			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1554	1673			1650	1364	1611	1663		1592	1728	
Flt Permitted	0.59	1.00			0.71	1.00	0.58	1.00		0.43	1.00	
Satd. Flow (perm)	968	1673			1204	1364	985	1663		720	1728	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	101	94	56	132	62	99	92	258	202	54	220	53
RTOR Reduction (vph)	0	15	0	0	0	70	0	13	0	0	4	0
Lane Group Flow (vph)	101	135	0	0	194	29	92	447	0	54	269	0
Confl. Peds. (#/hr)	14		16	16		14	17		18	18		17
Heavy Vehicles (%)	6%	5%	2%	0%	25%	5%	2%	5%	0%	4%	5%	2%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	25.8	25.8			25.8	25.8	52.0	52.0		52.0	52.0	
Effective Green, g (s)	26.8	26.8			26.8	26.8	53.0	53.0		53.0	53.0	
Actuated g/C Ratio	0.29	0.29			0.29	0.29	0.58	0.58		0.58	0.58	
Clearance Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	282	488			351	398	568	960		415	997	
v/s Ratio Prot		0.08						c0.27			0.16	
v/s Ratio Perm	0.10				c0.16	0.02	0.09			0.08		
v/c Ratio	0.36	0.28			0.55	0.07	0.16	0.47		0.13	0.27	
Uniform Delay, d1	25.7	25.0			27.4	23.5	9.0	11.2		8.9	9.7	
Progression Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.8	0.3			1.9	0.1	0.6	1.6		0.6	0.7	
Delay (s)	26.5	25.3			29.3	23.6	9.7	12.8		9.5	10.4	
Level of Service	С	С			С	С	Α	В		Α	В	
Approach Delay (s)		25.8			27.4			12.3			10.2	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			17.3	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.62									
Actuated Cycle Length (s)	•		91.8	S	um of lost	t time (s)			28.0			
Intersection Capacity Utiliza	ation		125.6%	IC	U Level	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

 Existing AM 05/06/2014
 Synchro 10 Report

 HDR Corporation
 Page 20

12			

	۶	-	•	•	—	•	•	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	A				77		ተተኈ				
Traffic Volume (vph)	54	410	0	0	0	341	0	1125	14	0	0	0
Future Volume (vph)	54	410	0	0	0	341	0	1125	14	0	0	0
Ideal Flow (vphpl)	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Storage Length (m)	15.0		0.0	0.0		80.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	0		1	0		0	0		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.88	1.00	0.91	0.91	1.00	1.00	1.00
Ped Bike Factor												
Frt						0.850		0.998				
Flt Protected	0.950											
Satd. Flow (prot)	1620	1807	0	0	0	2652	0	4968	0	0	0	0
Flt Permitted	0.950											
Satd. Flow (perm)	1620	1807	0	0	0	2652	0	4968	0	0	0	0
Right Turn on Red	Yes		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)	76					1059		1				
Link Speed (k/h)		60			30			60			60	
Link Distance (m)		411.9			164.9			800.6			492.6	
Travel Time (s)		24.7			19.8			48.0			29.6	
Confl. Peds. (#/hr)			1	1			15					15
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	4%	4%	4%	0%	0%	6%	0%	3%	7%	0%	0%	0%
Adj. Flow (vph)	60	456	0	0	0	379	0	1250	16	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	60	456	0	0	0	379	0	1266	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	3
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	0.86	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2				1		2				
Detector Template	Left	Thru				Right		Thru				
Leading Detector (m)	6.1	30.5				6.1		30.5				
Trailing Detector (m)	0.0	0.0				0.0		0.0				
Detector 1 Position(m)	0.0	0.0				0.0		0.0				
Detector 1 Size(m)	6.1	1.8				6.1		1.8				
Detector 1 Type	CI+Ex	CI+Ex				CI+Ex		CI+Ex				
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0				0.0		0.0				
Detector 1 Queue (s)	0.0	0.0				0.0		0.0				
Detector 1 Delay (s)	0.0	0.0				0.0		0.0				
Detector 2 Position(m)	· · ·	28.7						28.7				
Detector 2 Size(m)		1.8						1.8				
Detector 2 Type		CI+Ex						CI+Ex				
Detector 2 Channel												

Lanes, Volumes, Timings 1344: Lakeshore Blvd & British Colombia Rd

12/18/2020

	۶	-	•	•	←	•	4	†	<i>></i>	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)		0.0						0.0				
Turn Type	Perm	NA				Perm		NA				
Protected Phases		4						2				
Permitted Phases	4					9						
Detector Phase	4	4				9		2				
Switch Phase												
Minimum Initial (s)	10.0	10.0				10.0		10.0				
Minimum Split (s)	27.0	27.0				31.0		29.0				
Total Split (s)	61.0	61.0				49.0		34.0				
Total Split (%)	42.4%	42.4%				34.0%		23.6%				
Maximum Green (s)	55.0	55.0				43.0		27.0				
Yellow Time (s)	4.0	4.0				4.0		4.0				
All-Red Time (s)	2.0	2.0				2.0		3.0				
Lost Time Adjust (s)	-1.0	-1.0				-1.0		-1.0				
Total Lost Time (s)	5.0	5.0				5.0		6.0				
Lead/Lag	0.0	0.0				0.0		0.0				
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Recall Mode	Max	Max				None		Max				
Walk Time (s)	0.0	0.0				140110		7.0				
Flash Dont Walk (s)	0.0	0.0						15.0				
Pedestrian Calls (#/hr)	0.0	0.0						0				
Act Effct Green (s)	56.0	56.0				11.0		28.0				
Actuated g/C Ratio	0.50	0.50				0.10		0.25				
v/c Ratio	0.07	0.50				0.10		1.01				
Control Delay	2.4	20.6				0.51		69.6				
Queue Delay	0.0	0.0				0.7		0.0				
Total Delay	2.4	20.6				0.0		69.6				
LOS	2.4 A	20.0 C				Ο.7		09.0 E				
Approach Delay	А	18.5			0.7	А		69.6				
		10.5 B			0.7 A			09.0 F				
Approach LOS		D			А							
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 1	111											
Natural Cycle: 90												
Control Type: Semi Act-L												
Maximum v/c Ratio: 1.01												
Intersection Signal Delay					tersection							
Intersection Capacity Util				IC	U Level	of Service	В					
Analysis Period (min) 15												
Splits and Phases: 134	44: Lakeshore	Blvd & Bi	ritish Colo	mbia Rd								
↑ Ø2		1 04						Ø9				
34 s	61.0	דע					40					
010	018							-				

	•		•	•
	_		•	'
Lane Group	EBL	EBT	WBR	NBT
Lane Group Flow (vph)	60	456	379	1266
v/c Ratio	0.07	0.50	0.31	1.01
Control Delay	2.4	20.6	0.7	69.6
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	2.4	20.6	0.7	69.6
Queue Length 50th (m)	0.0	63.1	0.0	~102.5
Queue Length 95th (m)	4.7	90.6	0.0	#134.9
Internal Link Dist (m)		387.9		776.6
Turn Bay Length (m)	15.0		80.0	
Base Capacity (vph)	854	911	1690	1253
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.07	0.50	0.22	1.01

HCM Signalized 1344: Lakeshore		. , ,
1344. Lakeshore	DIVU & DITUSTI	Coloffibia Ru

	•	-	•	•	←	•	4	†	/	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^				77		ተተ _ጉ				
Traffic Volume (vph)	54	410	0	0	0	341	0	1125	14	0	0	0
Future Volume (vph)	54	410	0	0	0	341	0	1125	14	0	0	0
Ideal Flow (vphpl)	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0				5.0		6.0				
Lane Util. Factor	1.00	1.00				0.88		0.91				
Frpb, ped/bikes	1.00	1.00				1.00		1.00				
Flpb, ped/bikes	1.00	1.00				1.00		1.00				
Frt	1.00	1.00				0.85		1.00				
Flt Protected	0.95	1.00				1.00		1.00				
Satd. Flow (prot)	1620	1807				2652		4968				
Flt Permitted	0.95	1.00				1.00		1.00				
Satd. Flow (perm)	1620	1807				2652		4968				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	60	456	0.30	0.30	0.30	379	0.30	1250	16	0.30	0.30	0.50
RTOR Reduction (vph)	30	450	0	0	0	341	0	1230	0	0	0	0
Lane Group Flow (vph)	30	456	0	0	0	38	0	1265	0	0	0	0
	30	400	1	1	U	30	15	1200	U	U	U	15
Confl. Peds. (#/hr) Heavy Vehicles (%)	4%	4%	4%	0%	0%	6%	0%	3%	7%	0%	0%	0%
-		NA	470	0%	U%		U70		1 70	U%	U70	U%
Turn Type	Perm	NA 4				Perm		NA 2				
Protected Phases		4				^		2				
Permitted Phases	4	FF 0				9		07.0				
Actuated Green, G (s)	55.0	55.0				10.0		27.0				
Effective Green, g (s)	56.0	56.0				11.0		28.0				
Actuated g/C Ratio	0.50	0.50				0.10		0.25				
Clearance Time (s)	6.0	6.0				6.0		7.0				
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Lane Grp Cap (vph)	817	911				262		1253				
v/s Ratio Prot		c0.25						c0.25				
v/s Ratio Perm	0.02					c0.01						
v/c Ratio	0.04	0.50				0.14		1.01				
Uniform Delay, d1	13.9	18.2				45.7		41.5				
Progression Factor	1.00	1.00				1.00		1.00				
Incremental Delay, d2	0.1	2.0				0.3		27.8				
Delay (s)	14.0	20.2				45.9		69.3				
Level of Service	В	С				D		Е				
Approach Delay (s)		19.5			45.9			69.3			0.0	
Approach LOS		В			D			Е			Α	
Intersection Summary												
HCM 2000 Control Delay			53.3	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		0.62									
Actuated Cycle Length (s)	•		111.0	S	um of lost	time (s)			17.0			
Intersection Capacity Utiliza	tion		55.6%		U Level o				В			
Analysis Period (min)			15									
c Critical Lane Group												
2ou 20 0.0ap												

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

12/18/2020

	۶	-	•	•	←	•	4	†	/	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	5	0	6	176	0	56	0	240	434	0	419	0
Future Volume (vph)	5	0	6	176	0	56	0	240	434	0	419	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.75			0.70			0.68				
Frt		0.921			0.967			0.913				
Flt Protected		0.980			0.963							
Satd. Flow (prot)	0	1375	0	0	1561	0	0	1016	0	0	1571	0
FIt Permitted		0.899			0.771							
Satd. Flow (perm)	0	1163	0	0	958	0	0	1016	0	0	1571	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		41			41			87				
Link Speed (k/h)		50			40			50			50	
Link Distance (m)		106.6			106.9			249.2			212.5	
Travel Time (s)		7.7			9.6			17.9			15.3	
Confl. Peds. (#/hr)	157		273	273		157	260		222	222		260
Confl. Bikes (#/hr)			15			25			2			13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	0%	2%	0%	1%	0%	4%	0%	12%	1%	0%	10%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	12	20	20	12	20	20
Adj. Flow (vph)	5	0	7	191	0	61	0	261	472	0	455	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	12	0	0	252	0	0	733	0	0	455	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0	_		0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.13	1.01	1.01	1.13	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA			NA			NA	

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 25

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

	•	-	\rightarrow	•	←	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Minimum Split (s)	24.0	24.0		24.0	24.0		25.0	25.0		25.0	25.0	
Total Split (s)	28.0	28.0		28.0	28.0		52.0	52.0		52.0	52.0	
Total Split (%)	35.0%	35.0%		35.0%	35.0%		65.0%	65.0%		65.0%	65.0%	
Maximum Green (s)	23.0	23.0		23.0	23.0		46.0	46.0		46.0	46.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		4.0			4.0			5.0			5.0	
Lead/Lag		1.0			1.0			0.0			0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	100	100		100	100		100	100		100	100	
Act Effct Green (s)	100	22.5		100	22.5		100	48.5		100	48.5	
Actuated g/C Ratio		0.28			0.28			0.61			0.61	
v/c Ratio		0.20			0.84			1.13			0.48	
Control Delay		0.5			48.6			94.8			24.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		0.5			48.6			94.8			24.2	
LOS		0.5 A			40.0 D			54.0 F			24.2 C	
Approach Delay		0.5			48.6			94.8			24.2	
Approach LOS		0.5 A			40.0 D			54.0 F			24.2 C	
		^			D						U	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 40 (50%), Reference	ced to phase	2:NBTL a	and 6:SB	TL, Start	of Green							
Natural Cycle: 70												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 1.13												
Intersection Signal Delay:				Ir	ntersection	LOS: E						
Intersection Capacity Utiliz	ation 73.5%			IC	CU Level of	of Service	D D					
Analysis Period (min) 15												
Splits and Phases: 1449	: Dufferin S	t & Dwy/Li	berty St									
1 (22 (22)							- 1-	<u>∳</u> Ø4				
Ø2 (R)							20	-104				
1							28	5				
Ø6 (R)							- 13	Ø8				
							-					

Queues

1449: Dufferin St & Dwy/Liberty St

12/18/2020

	-	•	Ť	Ţ
				,
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	12	252	733	455
v/c Ratio	0.03	0.84	1.13	0.48
Control Delay	0.5	48.6	94.8	24.2
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	0.5	48.6	94.8	24.2
Queue Length 50th (m)	0.0	29.6	~128.6	58.0
Queue Length 95th (m)	0.4	#68.3	#193.1	m65.9
Internal Link Dist (m)	82.6	82.9	225.2	188.5
Turn Bay Length (m)				
Base Capacity (vph)	377	316	649	952
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio			1.13	0.48

Intersection Summary

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 27 HCM Signalized Intersection Capacity Analysis 1449: Dufferin St & Dwy/Liberty St

12/18/2020

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	5	0	6	176	0	56	0	240	434	0	419	0
Future Volume (vph)	5	0	6	176	0	56	0	240	434	0	419	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		0.81			0.91			0.68			1.00	
Flpb, ped/bikes		0.92			0.77			1.00			1.00	
Frt		0.92			0.97			0.91			1.00	
Flt Protected		0.98			0.96			1.00			1.00	
Satd. Flow (prot)		1269			1198			1016			1571	
Flt Permitted		0.90			0.77			1.00			1.00	
Satd. Flow (perm)		1164			958			1016			1571	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	0	7	191	0	61	0	261	472	0	455	0
RTOR Reduction (vph)	0	9	0	0	29	0	0	34	0	0	0	0
Lane Group Flow (vph)	0	3	0	0	223	0	0	699	0	0	455	0
Confl. Peds. (#/hr)	157		273	273		157	260		222	222		260
Confl. Bikes (#/hr)			15			25			2			13
Heavy Vehicles (%)	0%	2%	0%	1%	0%	4%	0%	12%	1%	0%	10%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	12	20	20	12	20	20
Turn Type	Perm	NA		Perm	NA			NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		21.5			21.5			47.5			47.5	
Effective Green, g (s)		22.5			22.5			48.5			48.5	
Actuated g/C Ratio		0.28			0.28			0.61			0.61	
Clearance Time (s)		5.0			5.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		327			269			615			952	
v/s Ratio Prot								c0.69			0.29	
v/s Ratio Perm		0.00			c0.23							
v/c Ratio		0.01			0.83			1.14			0.48	
Uniform Delay, d1		20.7			26.9			15.8			8.7	
Progression Factor		1.00			1.00			1.00			2.47	
Incremental Delay, d2		0.0			18.4			80.0			0.7	
Delay (s)		20.7			45.4			95.7			22.3	
Level of Service		С			D			F			С	
Approach Delay (s)		20.7			45.4			95.7			22.3	
Approach LOS		С			D			F			С	
Intersection Summary												
HCM 2000 Control Delay			63.4	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.04		J.VI 2000	20101010						
Actuated Cycle Length (s)	,		80.0	Si	um of lost	time (s)			9.0			
Intersection Capacity Utiliza	ation		73.5%		U Level o	. ,			D			
Analysis Period (min)			15	10	S 20101 C	5011100						
c Critical Lane Group			- 10									
our 20110 0100p												

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

12/18/2020

Lanes, Volumes,	Timings
1628: Shaw St &	King St

	ʹ	-	\rightarrow	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			413			413-	
Traffic Volume (vph)	0	542	17	0	459	60	63	226	19	45	87	116
Future Volume (vph)	0	542	17	0	459	60	63	226	19	45	87	116
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.99			0.99			0.94			0.82	
Frt		0.996			0.984			0.991			0.930	
Flt Protected								0.990			0.991	
Satd. Flow (prot)	0	1415	0	0	1391	0	0	3063	0	0	2249	0
Flt Permitted								0.819			0.828	
Satd. Flow (perm)	0	1415	0	0	1391	0	0	2416	0	0	1845	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4			15			10			133	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		199.1			255.2			127.7			380.6	
Travel Time (s)		14.3			18.4			11.5			34.3	
Confl. Peds. (#/hr)	60	14.0	239	239	10.1	60	194	11.0	93	93	01.0	194
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	100%	7%	0%	100%	8%	2%	5%	1%	0%	33%	2%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0.0	0	0	0
Adj. Flow (vph)	0	623	20	0	528	69	72	260	22	52	100	133
Shared Lane Traffic (%)	U	023	20	U	320	03	12	200	22	32	100	100
Lane Group Flow (vph)	0	643	0	0	597	0	0	354	0	0	285	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	0.0	rtigiit	LOIL	0.0	rtigitt	LOIL	0.0	rtigiit	LOIL	0.0	ragnt
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.16	1.32	1.16	1.16	1.32	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24	1.32	1.10	24	1.32	1.10	24	1.10	1.10	24	1.10	1.10
Number of Detectors	1	2	14	1	2	14	1	2	14	1	2	14
Detector Template	Left	Thru		Left	Thru		Left	Thru		-	Thru	
	6.1	30.5		6.1	30.5		6.1	30.5		Left 6.1	30.5	
Leading Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Trailing Detector (m) Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	6.1			6.1	1.8			1.8		6.1	1.8	
Detector 1 Size(m)		1.8			CI+Ex		6.1				CI+Ex	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+EX		CI+Ex	CI+Ex		CI+Ex	CI+EX	
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel											0.5	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	

	•	-	•	•	—	•	1	†	-	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	22.0	22.0		22.0	22.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	28.0	28.0		28.0	28.0		26.0	26.0		26.0	26.0	
Total Split (s)	43.0	43.0		43.0	43.0		27.0	27.0		27.0	27.0	
Total Split (%)	61.4%	61.4%		61.4%	61.4%		38.6%	38.6%		38.6%	38.6%	
Maximum Green (s)	37.0	37.0		37.0	37.0		21.0	21.0		21.0	21.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	15.0	15.0		15.0	15.0		13.0	13.0		13.0	13.0	
Pedestrian Calls (#/hr)	100	100		20	20		31	31		100	100	
Act Effct Green (s)		38.9			38.9			21.1			21.1	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
v/c Ratio		0.82			0.77			0.48			0.44	
Control Delay		23.6			20.4			22.0			12.6	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		23.6			20.4			22.0			12.6	
LOS		С			С			С			В	
Approach Delay		23.6			20.4			22.0			12.6	
Approach LOS		С			С			С			В	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 1 (1%), Referenced	to phase 2	EBTL and	I 6:WBTL,	Start of	1st Green							
Natural Cycle: 60												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.82												
Intersection Signal Delay:					ntersection							
Intersection Capacity Utiliz	ation 78.9%			10	CU Level o	of Service	D D					
Analysis Period (min) 15												
Splits and Phases: 1628	3: Shaw St 8	King St										
ø2 (R)							₹ ø4					
43 s							27 s					
₩ Ø6 (R)							↓ øs					
" № (K)							¥ 100					

 Existing AM 05/06/2014
 Synchro 10 Report

 HDR Corporation
 Page 29

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 30

Queues 1628: Shaw St & King St

	-	←	†	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	643	597	354	285
v/c Ratio	0.82	0.77	0.48	0.44
Control Delay	23.6	20.4	22.0	12.6
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	23.6	20.4	22.0	12.6
Queue Length 50th (m)	61.9	53.5	19.2	7.8
Queue Length 95th (m)	#120.3	#91.1	29.1	16.4
Internal Link Dist (m)	175.1	231.2	103.7	356.6
Turn Bay Length (m)				
Base Capacity (vph)	788	779	766	671
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.82	0.77	0.46	0.42
Intersection Summary				

12/18/2020

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 31

HCM Signalized Intersection Capacity Analysis 1628: Shaw St & King St

12/18/2020

	۶	-	•	•	•	•	4	†	-	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			414	
Traffic Volume (vph)	0	542	17	0	459	60	63	226	19	45	87	116
Future Volume (vph)	0	542	17	0	459	60	63	226	19	45	87	116
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			0.99			0.84	
Flpb, ped/bikes		1.00			1.00			0.95			0.98	
Frt		1.00			0.98			0.99			0.93	
Flt Protected		1.00			1.00			0.99			0.99	
Satd. Flow (prot)		1415			1391			2920			2209	
Flt Permitted		1.00			1.00			0.82			0.83	
Satd. Flow (perm)		1415			1391			2417			1846	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	0	623	20	0	528	69	72	260	22	52	100	133
RTOR Reduction (vph)	0	2	0	0	7	0	0	7	0	0	93	0
Lane Group Flow (vph)	0	641	0	0	590	0	0	347	0	0	192	0
Confl. Peds. (#/hr)	60	0	239	239	000	60	194	0	93	93	.02	194
Heavy Vehicles (%)	100%	7%	0%	100%	8%	2%	5%	1%	0%	33%	2%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA.	21		NA		Perm	NA		Perm	NA	
Protected Phases		2			6		1 Cilli	4		1 Cilli	8	
Permitted Phases	2	2		6	U		4	-		8	U	
Actuated Green, G (s)		37.9			37.9			20.1			20.1	
Effective Green, g (s)		38.9			38.9			21.1			21.1	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		786			772			728			556	
v/s Ratio Prot					0.42			120			556	
		c0.45			0.42			-0.44			0.10	
v/s Ratio Perm		0.00			0.70			c0.14				
v/c Ratio		0.82			0.76			0.48			0.35	
Uniform Delay, d1		12.6			12.0			19.9			19.1	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		9.1			7.1			0.5			0.4	
Delay (s)		21.8			19.1			20.4			19.4	
Level of Service		C 21.8			B 19.1			C			B 19.4	
Approach Delay (s) Approach LOS		21.8 C			19.1 B			20.4 C			19.4 B	
••												
Intersection Summary												
HCM 2000 Control Delay			20.3	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity	/ ratio		0.70									
Actuated Cycle Length (s)			70.0		um of lost				10.0			
Intersection Capacity Utilizatio	n		78.9%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

1	2/	1	8	2	0	2	U

	ᄼ	-	•	•	—	•	4	†	~	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	644	5	0	534	105	0	5	0	154	0	96
Future Volume (vph)	0	644	5	0	534	105	0	5	0	154	0	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			0.99						0.87	
Frt		0.999			0.978						0.948	
Flt Protected											0.970	
Satd. Flow (prot)	0	1293	0	0	1334	0	0	1409	0	0	1314	0
Flt Permitted											0.809	
Satd. Flow (perm)	0	1293	0	0	1334	0	0	1409	0	0	1054	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			22						41	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		318.4			199.1			158.6			196.7	
Travel Time (s)		22.9			14.3			11.4			14.2	
Confl. Peds. (#/hr)	41		148	148		41	117		33	33		117
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	0%	18%	0%	0%	11%	8%	0%	20%	0%	6%	0%	10%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	0	732	6	0	607	119	0	6	0	175	0	109
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	738	0	0	726	0	0	6	0	0	284	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	J .		0.0	,		0.0	J -		0.0	J .
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.32	1.16	1.16	1.32	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		J X			J X			J X			3 ZX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA			NA			NA		Perm	NA	
Protected Phases		2			6			8		i Giiii	4	
i iotottou i iiasos					U			U			4	

	•	-	•	•	←	•	4	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	24.0	24.0		24.0	24.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	30.0	30.0		30.0	30.0		26.0	26.0		26.0	26.0	
Total Split (s)	53.0	53.0		53.0	53.0		27.0	27.0		27.0	27.0	
Total Split (%)	66.3%	66.3%		66.3%	66.3%		33.8%	33.8%		33.8%	33.8%	
Maximum Green (s)	47.0	47.0		47.0	47.0		22.0	22.0		22.0	22.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	17.0	17.0		17.0	17.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		14	14		100	100		11	11	
Act Effct Green (s)		48.2			48.2			22.8			22.8	
Actuated g/C Ratio		0.60			0.60			0.28			0.28	
v/c Ratio		0.95			0.89			0.01			0.86	
Control Delay		39.0			29.8			20.6			50.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		39.0			29.8			20.6			50.1	
LOS		D			С			С			D	
Approach Delay		39.0			29.8			20.6			50.1	
Approach LOS		D			С			С			D	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 1 (1%), Reference	d to phase 2:	EBTL and	6:WBTL	., Start of	1st Green	1						
Natural Cycle: 80												
Control Type: Actuated-Co	oordinated											
Maximum v/c Ratio: 0.95												
Intersection Signal Delay:					ntersection							
Intersection Capacity Utiliz	zation 71.5%			10	CU Level	of Service	e C					
Analysis Period (min) 15												
Splits and Phases: 185	1: King St &	Sudbury S	St									
ø2 (R)								Ø4				
53 s							2	7 s				
▼ Ø6 (R)								¶ [†] ø8				
53 s							2	7 s				

 Existing AM 05/06/2014
 Synchro 10 Report

 HDR Corporation
 Page 33

Existing AM 05/06/2014 Synchro 10 Report HDR Corporation Page 34

1851: King St & Sudbury St

12/18/2020

	-	←	†	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	738	726	6	284
v/c Ratio	0.95	0.89	0.01	0.86
Control Delay	39.0	29.8	20.6	50.1
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	39.0	29.8	20.6	50.1
Queue Length 50th (m)	94.3	84.3	0.7	35.1
Queue Length 95th (m)	#169.6	#158.4	3.2	#75.4
Internal Link Dist (m)	294.4	175.1	134.6	172.7
Turn Bay Length (m)				
Base Capacity (vph)	779	812	405	332
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.95	0.89	0.01	0.86
Intersection Summany				

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 35

HCM Signalized Intersection Capacity Analysis 1851: King St & Sudbury St

	۶	-	*	•	←	•	1	†	~	>		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	0	644	5	0	534	105	0	5	0	154	0	96
Future Volume (vph)	0	644	5	0	534	105	0	5	0	154	0	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			1.00			0.91	
Flpb, ped/bikes		1.00			1.00			1.00			0.96	
Frt		1.00			0.98			1.00			0.95	
Flt Protected		1.00			1.00			1.00			0.97	
Satd. Flow (prot)		1293			1333			1409			1264	
Flt Permitted		1.00			1.00			1.00			0.81	
Satd. Flow (perm)		1293			1333			1409			1053	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	0	732	6	0	607	119	0	6	0	175	0	109
RTOR Reduction (vph)	0	0	0	0	9	0	0	0	0	0	29	0
Lane Group Flow (vph)	0	738	0	0	717	0	0	6	0	0	255	0
Confl. Peds. (#/hr)	41		148	148		41	117		33	33		117
Heavy Vehicles (%)	0%	18%	0%	0%	11%	8%	0%	20%	0%	6%	0%	10%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA			NA			NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)		47.2			47.2			21.8			21.8	
Effective Green, g (s)		48.2			48.2			22.8			22.8	
Actuated g/C Ratio		0.60			0.60			0.29			0.29	
Clearance Time (s)		6.0			6.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		779			803			401			300	
v/s Ratio Prot		c0.57			0.54			0.00			000	
v/s Ratio Perm		00.01			0.01			0.00			c0.24	
v/c Ratio		0.95			0.89			0.01			0.85	
Uniform Delay, d1		14.7			13.7			20.5			27.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		21.6			14.4			0.0			19.5	
Delay (s)		36.3			28.1			20.6			46.5	
Level of Service		D			C			C			D	
Approach Delay (s)		36.3			28.1			20.6			46.5	
Approach LOS		D			С			С			D	
Intersection Summary												
HCM 2000 Control Delay			34.5	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	ratio		0.92									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilization			71.5%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

12/18/2020

Lanes, Volumes, Timings 1912: Atlantic Ave & King St

Lanes, volumes, limings	
1912: Atlantic Ave & King	St

HDR Corporation

12/18/2020

		Λ2	

Page 38

	-	•	•	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			4	ኘ	7
Traffic Volume (vph)	558	64	0	626	239	152
Future Volume (vph)	558	64	0	626	239	152
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.0	3.0
Storage Length (m)	0.0	0.0	0.0	0.0	30.0	0.0
Storage Lanes		0.0	0.0		1	1
Taper Length (m)		,	2.5		2.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	1.00	1.00	1.00	0.96	0.96
Frt	0.986				0.00	0.850
FIt Protected	0.000				0.950	0.000
Satd. Flow (prot)	1298	0	0	1390	1458	1159
Flt Permitted	1250	0	J	1000	0.950	1100
Satd. Flow (perm)	1298	0	0	1390	1399	1114
Right Turn on Red	1230	Yes	U	1350	1333	Yes
Satd. Flow (RTOR)	12	168				49
Link Speed (k/h)	50			50	30	49
Link Distance (m)	191.3			318.4	198.0	
Travel Time (s)	13.8			22.9	23.8	
Confl. Peds. (#/hr)	13.8	279	279	22.9	23.8	11
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
	11%	6%	100%	10%	4%	17%
Heavy Vehicles (%)	24	24	100%	24	4%	17%
Bus Blockages (#/hr)		=:			-	-
Adj. Flow (vph)	649	74	0	728	278	177
Shared Lane Traffic (%)	700		_	700	070	477
Lane Group Flow (vph)	723	0	0	728	278	177
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	1.6			1.6	1.6	
Two way Left Turn Lane						
Headway Factor	1.32	1.16	1.16	1.32	1.25	1.25
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (m)	30.5		6.1	30.5	6.1	6.1
Trailing Detector (m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Size(m)	1.8		6.1	1.8	6.1	6.1
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	Cl+Ex			CI+Ex		
DOGOGOT Z TYPE	OITEX			OI LLX		

 Existing AM 05/06/2014
 Synchro 10 Report

 HDR Corporation
 Page 37

	-	•	•	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA			NA	Perm	Perm
Protected Phases	2			6		
Permitted Phases			6		8	8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	21.0		21.0	21.0	20.0	20.0
Minimum Split (s)	28.0		28.0	28.0	26.0	26.0
Total Split (s)	43.0		43.0	43.0	27.0	27.0
Total Split (%)	61.4%		61.4%	61.4%	38.6%	38.6%
Maximum Green (s)	36.0		36.0	36.0	21.0	21.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	3.0		3.0	3.0	2.0	2.0
Lost Time Adjust (s)	-1.0		5.0	-1.0	-1.0	-1.0
Total Lost Time (s)	6.0			6.0	5.0	5.0
Lead/Lag	0.0			0.0	5.0	3.0
Lead-Lag Optimize?						
	3.0		3.0	3.0	3.0	3.0
Vehicle Extension (s)						
Recall Mode	C-Max		C-Max	C-Max	None	None
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	14.0		14.0	14.0	13.0	13.0
Pedestrian Calls (#/hr)	100		0	0	8	8
Act Effct Green (s)	37.6			37.6	21.4	21.4
Actuated g/C Ratio	0.54			0.54	0.31	0.31
v/c Ratio	1.03			0.98	0.65	0.47
Control Delay	61.2			46.6	29.3	18.8
Queue Delay	0.0			0.0	0.0	0.0
Total Delay	61.2			46.6	29.3	18.8
LOS	E			D	С	В
Approach Delay	61.2			46.6	25.2	
Approach LOS	Е			D	С	
Intersection Summary						
Area Type:	CBD					
Cycle Length: 70	ODD					
Actuated Cycle Length: 70	0					
Offset: 6 (9%), Reference		ERT and	6-WRTI	Start of 1	et Groon	
Natural Cycle: 80	u to priase 2.i	_DI allu	U.WDIL,	Start Of 1	St Oleen	
Control Type: Actuated-C						
Maximum v/c Ratio: 1.03						100 0
Intersection Signal Delay:					ntersection	
Intersection Capacity Utili	zation 63.7%			IC	JU Level	of Service
Analysis Period (min) 15						
Splits and Phases: 191	2: Atlantic Ave	e & King	St			
, →ø2 (R)						
- 62 (R)						_

		-		
	-	-	1	
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	723	728	278	177
v/c Ratio	1.03	0.98	0.65	0.47
Control Delay	61.2	46.6	29.3	18.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	61.2	46.6	29.3	18.8
Queue Length 50th (m)	~92.3	84.0	31.5	13.1
Queue Length 95th (m)	#153.7	#148.6	51.3	27.6
Internal Link Dist (m)	167.3	294.4	174.0	
Turn Bay Length (m)			30.0	
Base Capacity (vph)	702	746	439	383
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	1.03	0.98	0.63	0.46

Intersection Summar

Queue shown is maximum after two cycles.

 Existing AM 05/06/2014
 Synchro 10 Report

 HDR Corporation
 Page 39

WBT Movement EBT NBR Lane Configurations Traffic Volume (vph) 558 626 239 Future Volume (vph) 558 64 0 626 239 152 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width 3.5 3.5 3.5 3.5 3.0 3.0 Total Lost time (s) 6.0 5.0 5.0 Lane Util. Factor 1.00 1.00 1.00 1.00 Frpb, ped/bikes 0.95 1.00 1.00 0.96 Flpb, ped/bikes 1.00 1.00 0.96 1.00 0.99 1.00 1.00 0.85 Flt Protected 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1298 1390 1399 1114 Flt Permitted 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1298 1390 1399 1114 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 Adj. Flow (vph) 649 177 74 728 278 RTOR Reduction (vph) 34 6 0 n 0 0 Lane Group Flow (vph) 717 728 278 143 279 279 Confl. Peds. (#/hr) 23 11 Heavy Vehicles (%) 6% 100% 4% 11% 10% 17% Bus Blockages (#/hr) 24 24 24 24 0 Turn Type NA NA Perm Perm Protected Phases 2 Permitted Phases Actuated Green, G (s) 36.6 36.6 20.4 20.4 Effective Green, g (s) 37.6 37.6 21.4 21.4 Actuated g/C Ratio 0.54 0.54 0.31 0.31 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 697 746 427 340 v/s Ratio Prot c0.55 0.52 v/s Ratio Perm c0.20 0.13 v/c Ratio 1.03 0.98 0.65 0.42 Uniform Delay, d1 16.2 15.8 21.1 19.4 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 41.8 27.6 3.5 8.0

HCM Signalized Intersection Capacity Analysis

58.0

Ε

58.0

1912: Atlantic Ave & King St

Delay (s)

Level of Service

Approach LOS

Approach Delay (s)

Intersection Summary			
HCM 2000 Control Delay	44.0	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.91		
Actuated Cycle Length (s)	70.0	Sum of lost time (s)	12.0
Intersection Capacity Utilization	63.7%	ICU Level of Service	В
Analysis Period (min)	15		
c Critical Lane Group			

43.3

D C

43.3 22.9

D

24.6

С

20.2

С

Existing AM 05/06/2014 Synchro 10 Report HDR Corporation Page 40

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	•	-	←	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		W	-05.1
Traffic Volume (vph)	0	676	490	79	144	42
Future Volume (vph)	0	676	490	79	144	42
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.981		0.969	
Flt Protected			0.001		0.963	
Satd. Flow (prot)	0	1429	1398	0	1474	0
Flt Permitted	- 0	1123	1000		0.963	- 3
Satd. Flow (perm)	0	1429	1398	0	1474	0
Right Turn on Red	U	1723	1000	Yes	1717	Yes
Satd. Flow (RTOR)			20	165	18	163
Link Speed (k/h)		50	50		50	
Link Distance (m)		316.7	191.3		100.8	
		22.8	13.8		7.3	
Travel Time (s)	0.88		0.88	0.88	0.88	0.88
Peak Hour Factor		0.88			0.88	
Heavy Vehicles (%)	0%	7%	8%	3%		21%
Bus Blockages (#/hr)	24	24	24	24	0	0
Adj. Flow (vph)	0	768	557	90	164	48
Shared Lane Traffic (%)		=00	0.45		0.15	
Lane Group Flow (vph)	0	768	647	0	212	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)		0.0	0.0		3.5	
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		1.6	1.6		1.6	
Two way Left Turn Lane						
Headway Factor	1.16	1.32	1.32	1.16	1.16	1.16
Turning Speed (k/h)	24			14	24	14
Number of Detectors	1	2	2		1	
Detector Template	Left	Thru	Thru		Left	
Leading Detector (m)	6.1	30.5	30.5		6.1	
Trailing Detector (m)	0.0	0.0	0.0		0.0	
Detector 1 Position(m)	0.0	0.0	0.0		0.0	
Detector 1 Size(m)	6.1	1.8	1.8		6.1	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	
Detector 1 Channel	OITEX	OITLX	OITLX		OITLX	
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	
	0.0	0.0	0.0		0.0	
Detector 1 Queue (s)						
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	
Detector 2 Position(m)		28.7	28.7			
Detector 2 Size(m)		1.8	1.8			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel						
Detector 2 Extend (s)		0.0	0.0			
Turn Type		NA	NA		Perm	
Protected Phases		2	6			
Permitted Phases	2				8	
Detector Phase	2	2	6		8	

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 41 Lanes, Volumes, Timings 2081: King St & Joe Shuster Way

	•	-	←	•	-	✓	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Switch Phase							
Minimum Initial (s)	20.0	20.0	20.0		18.0		
Minimum Split (s)	26.0	26.0	26.0		23.0		
Total Split (s)	56.0	56.0	56.0		24.0		
Total Split (%)	70.0%	70.0%	70.0%		30.0%		
Maximum Green (s)	50.0	50.0	50.0		19.0		
Yellow Time (s)	4.0	4.0	4.0		3.0		
All-Red Time (s)	2.0	2.0	2.0		2.0		
Lost Time Adjust (s)		-1.0	-1.0		-1.0		
Total Lost Time (s)		5.0	5.0		4.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0		3.0		
Recall Mode	C-Max	C-Max	None		None		
Walk Time (s)	7.0	7.0	7.0		7.0		
Flash Dont Walk (s)	13.0	13.0	13.0		11.0		
Pedestrian Calls (#/hr)	0	0	0		0		
Act Effct Green (s)		51.7	51.7		19.3		
Actuated g/C Ratio		0.65	0.65		0.24		
v/c Ratio		0.83	0.71		0.58		
Control Delay		19.5	14.5		31.4		
Queue Delay		0.0	0.0		0.0		
Total Delay		19.5	14.5		31.4		
LOS		В	В		С		
Approach Delay		19.5	14.5		31.4		
Approach LOS		В	В		С		
Intersection Summary							
Area Type:	CBD						
Cycle Length: 80							
Actuated Cycle Length: 80							
Offset: 1 (1%), Referenced	to phase 2:	EBTL, Sta	art of Gre	en			
Natural Cycle: 70							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.83							
Intersection Signal Delay:					ntersection		
Intersection Capacity Utiliz	ation 62.0%			IC	CU Level of	of Service B	
Analysis Period (min) 15							
0.111							
Splits and Phases: 2081	: King St &	Joe Shust	ter Way				
→ Ø2 (R)							
· 22 (N)						_	

	-	←	-						
Lane Group	EBT	WBT	SBL						
Lane Group Flow (vph)	768	647	212						
v/c Ratio	0.83	0.71	0.58						
Control Delay	19.5	14.5	31.4						
Queue Delay	0.0	0.0	0.0						
Total Delay	19.5	14.5	31.4						
Queue Length 50th (m)	72.0	53.8	26.0						
Queue Length 95th (m)	m102.2	92.7	45.2						
Internal Link Dist (m)	292.7	167.3	76.8						
Turn Bay Length (m)									
Base Capacity (vph)	923	910	382						
Starvation Cap Reductn	0	0	0						
Spillback Cap Reductn	0	0	0						
Storage Cap Reductn	0	0	0						
Reduced v/c Ratio	0.83	0.71	0.55						
Intersection Summary									
m Volume for 95th percentile queue is metered by upstream signal.									

	۶	-	•	•	-	✓		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		4	1		W			
Traffic Volume (vph)	0	676	490	79	144	42		
uture Volume (vph)	0	676	490	79	144	42		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		5.0	5.0		4.0			
ane Util. Factor		1.00	1.00		1.00			
-rt		1.00	0.98		0.97			
It Protected		1.00	1.00		0.96			
Satd. Flow (prot)		1429	1398		1474			
Flt Permitted		1.00	1.00		0.96			
Satd. Flow (perm)		1429	1398		1474			
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88		
Adj. Flow (vph)	0	768	557	90	164	48		
RTOR Reduction (vph)	0	0	7	0	14	0		
ane Group Flow (vph)	0	768	640	0	198	0		
Heavy Vehicles (%)	0%	7%	8%	3%	3%	21%		
Bus Blockages (#/hr)	24	24	24	24	0	0		
urn Type		NA	NA		Perm			
rotected Phases		2	6					
ermitted Phases	2				8			
Actuated Green, G (s)		50.7	50.7		18.3			
Effective Green, g (s)		51.7	51.7		19.3			
Actuated g/C Ratio		0.65	0.65		0.24			
Clearance Time (s)		6.0	6.0		5.0			
/ehicle Extension (s)		3.0	3.0		3.0			
ane Grp Cap (vph)		923	903		355			
/s Ratio Prot		c0.54	0.46					
/s Ratio Perm					c0.13			
/c Ratio		0.83	0.71		0.56			
Jniform Delay, d1		10.8	9.2		26.6			
Progression Factor		1.20	1.00		1.00			
ncremental Delay, d2		4.7	2.6		1.9			
Delay (s)		17.6	11.8		28.5			
evel of Service		В	В		С			
Approach Delay (s)		17.6	11.8		28.5			
Approach LOS		В	В		С			
ntersection Summary								
HCM 2000 Control Delay			16.7	Н	CM 2000	Level of Service	e	В
HCM 2000 Volume to Capacity	ratio		0.77			2. 2. 23. 110		_
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)		10.0
ntersection Capacity Utilization			62.0%		CU Level			В
Analysis Period (min)			15					
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis

2081: King St & Joe Shuster Way

Synchro 10 Report Page 43

c Critical Lane Group

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

12/18/2020

	•	•	†	<i>></i>	/	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	<u> </u>	7	*	<u> </u>
Traffic Volume (vph)	13	61	295	30	71	483
Future Volume (vph)	13	61	295	30	71	483
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.0	3.5	3.0	3.0	3.5
Storage Length (m)	30.0	0.0	0.0	15.0	30.0	0.0
Storage Lanes	1	1		13.0	1	
Taper Length (m)	2.5				2.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	0.97	0.99	1.00
Frt		0.850		0.850	0.03	
Flt Protected	0.950	0.000		0.000	0.950	
Satd. Flow (prot)	1560	1122	1807	1370	1276	1807
Flt Permitted	0.950	1122	1007	13/0	0.521	1007
	1560	1122	1807	1329	696	1807
Satd. Flow (perm)	1000		1807		996	1807
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	22	73	20	24		20
Link Speed (k/h)	30		30			30
Link Distance (m)	148.7		265.9			191.3
Travel Time (s)	17.8		31.9			23.0
Confl. Peds. (#/hr)				7	7	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	8%	30%	4%	10%	32%	4%
Bus Blockages (#/hr)	0	8	0	0	0	0
Adj. Flow (vph)	15	73	351	36	85	575
Shared Lane Traffic (%)						
Lane Group Flow (vph)	15	73	351	36	85	575
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.0		3.0			3.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	1.6		1.6			1.6
Two way Left Turn Lane	1.0		1.0			1.0
Headway Factor	1.09	1.14	1.01	1.09	1.09	1.01
	1.09	1.14	1.01	1.09	24	1.01
Turning Speed (k/h)			0			0
Number of Detectors	1	1	2	1	1	_ 2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (m)	6.1	6.1	30.5	6.1	6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	6.1	1.8	6.1	6.1	1.8
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		2.0	28.7	2.0	2.0	28.7
Detector 2 Size(m)			1.8			1.8
Detector 2 Type			CI+Ex			CI+Ex
Detector 2 Type			OITLX			OITLX

Existing AM 05/06/2014 HDR Corporation Synchro 10 Report Page 45

HDR Corporation

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

12/18/2020

Page 46

	•	•	†	-	-	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Detector 2 Channel							
Detector 2 Extend (s)			0.0			0.0	
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA	
Protected Phases	. 0.111	1	2		1	6	
Permitted Phases	8	8		2	6		
Detector Phase	8	1	2	2	1	6	
Switch Phase				_			
Minimum Initial (s)	21.0	6.0	27.0	27.0	6.0	27.0	
Minimum Split (s)	26.0	10.0	34.0	34.0	10.0	34.0	
Total Split (s)	29.0	11.0	40.0	40.0	11.0	51.0	
Total Split (%)	36.3%	13.8%	50.0%	50.0%	13.8%	63.8%	
Maximum Green (s)	24.0	7.0	33.0	33.0	7.0	44.0	
Yellow Time (s)	3.0	3.0	4.0	4.0	3.0	44.0	
All-Red Time (s)	2.0	1.0	3.0	3.0	1.0	3.0	
	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Lost Time Adjust (s)	-1.0 4.0	-1.0	-1.0 6.0	-1.0 6.0	-1.0 3.0	-1.0 6.0	
Total Lost Time (s)	4.0					0.0	
Lead/Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	2.0	2.2	2.2	2.2	2.0	2.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	C-Max	C-Max	None	C-Max	
Walk Time (s)	7.0		7.0	7.0		0.0	
Flash Dont Walk (s)	14.0		20.0	20.0		0.0	
Pedestrian Calls (#/hr)	0		2	2		0	
Act Effct Green (s)	22.0	13.3	60.9	60.9	71.8	73.6	
Actuated g/C Ratio	0.28	0.17	0.76	0.76	0.90	0.92	
v/c Ratio	0.03	0.30	0.26	0.04	0.12	0.35	
Control Delay	21.7	8.2	7.1	5.0	2.7	3.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.7	8.2	7.1	5.0	2.7	3.6	
LOS	С	Α	Α	Α	Α	Α	
Approach Delay	10.5		6.9			3.5	
Approach LOS	В		Α			Α	
Internation Comme		_	_	_			
Intersection Summary							
Area Type:	Other						
Cycle Length: 80							
Actuated Cycle Length: 80		0.1.DT					
Offset: 15 (19%), Reference	ed to phase	2:NBT a	nd 6:SBT	L, Start o	1st Gree	n	
Natural Cycle: 70							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.35							
Intersection Signal Delay:				Ir	ntersectio	n LOS: A	
Intersection Capacity Utiliz	ation 56.7%)		I	CU Level	of Service I	3
Analysis Period (min) 15							
	: British Col	lombia Ro	l/Dufferin	St & Sasl	katchewa	n Rd	
\							
Ø1 Ø	i2 (R)						
11 s 40 s							
Ø6 (R)							
F1 c (K)							i

Queues

Existing AM 05/06/2014 HDR Corporation

2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

10	14	0	10	n	0	n	
12	ч	Ö.	Z	u	Z		

	•	•	†	~	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	15	73	351	36	85	575
v/c Ratio	0.03	0.30	0.26	0.04	0.12	0.35
Control Delay	21.7	8.2	7.1	5.0	2.7	3.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.7	8.2	7.1	5.0	2.7	3.6
Queue Length 50th (m)	1.7	0.0	9.2	0.3	0.0	0.0
Queue Length 95th (m)	5.6	5.6	53.1	5.5	8.7	63.7
Internal Link Dist (m)	124.7		241.9			167.3
Turn Bay Length (m)	30.0			15.0	30.0	
Base Capacity (vph)	487	254	1376	1018	687	1662
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.03	0.29	0.26	0.04	0.12	0.35
Intersection Summary						

Synchro 10 Report Page 47

HCM Signalized Intersection Capacity Analysis 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

12/18/2020

	•	_	Ī		>	↓	
ovement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	*	7	^	7	ሻ	^	
affic Volume (vph)	13	61	295	30	71	483	
uture Volume (vph)	13	61	295	30	71	483	
eal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
ane Width	3.0	3.0	3.5	3.0	3.0	3.5	
otal Lost time (s)	4.0	3.0	6.0	6.0	3.0	6.0	
ane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00	
pb, ped/bikes	1.00	1.00	1.00	0.97	1.00	1.00	
pb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
t	1.00	0.85	1.00	0.85	1.00	1.00	
t Protected	0.95	1.00	1.00	1.00	0.95	1.00	
atd. Flow (prot)	1560	1122	1807	1329	1272	1807	
t Permitted	0.95	1.00	1.00	1.00	0.52	1.00	
atd. Flow (perm)	1560	1122	1807	1329	698	1807	
eak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	
dj. Flow (vph)	15	73	351	36	85	575	
TOR Reduction (vph)	0	62	0	8	0	0	
ane Group Flow (vph)	15	11	351	28	85	575	
onfl. Peds. (#/hr)	10	- 11	001	7	7	010	
eavy Vehicles (%)	8%	30%	4%	10%	32%	4%	
us Blockages (#/hr)	0 /0	8	4 /0	0	0	0	
um Type	Perm	pm+ov	NA	Perm	pm+pt	NA NA	
rotected Phases	i.eiiii	pm+ov 1	NA 2	Fellill	риі+рі 1	6	
ermitted Phases	8	8	2	2	6	0	
ermitted Phases ctuated Green, G (s)	4.2	10.1	53.9	53.9	63.8	63.8	
	5.2	12.1	54.9	54.9	64.8	64.8	
ffective Green, g (s)	0.07	0.15	0.69	0.69	0.81	0.81	
ctuated g/C Ratio							
learance Time (s)	5.0	4.0	7.0	7.0	4.0	7.0	
ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
ane Grp Cap (vph)	101	169	1240	912	614	1463	
s Ratio Prot		0.01	0.19		0.01	c0.32	
s Ratio Perm	c0.01	0.00		0.02	0.10		
c Ratio	0.15	0.07	0.28	0.03	0.14	0.39	
niform Delay, d1	35.3	29.1	4.9	4.0	1.6	2.1	
rogression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
cremental Delay, d2	0.7	0.2	0.6	0.1	0.1	0.8	
elay (s)	36.0	29.3	5.5	4.1	1.7	2.9	
evel of Service	D	С	Α	Α	Α	Α	
oproach Delay (s)	30.4		5.3			2.8	
oproach LOS	С		Α			Α	
ersection Summary							
CM 2000 Control Delay			5.8	Н	CM 2000	Level of Serv	/ice
CM 2000 Volume to Capacity	ratio		0.40		2.11 2000		
ctuated Cycle Length (s)			80.0	S	um of lost	time (s)	14.
tersection Capacity Utilization	1		56.7%		CU Level	. ,	1-1.
			15				
nalysis Period (min)							

Lanes, Volumes, Timings 97: Yukon Place & British Colombia Rd

05/20/2021

Lane Configurations	000
Traffic Volume (vph) 1 423 0 1 308 1 7 1 0 0 0 Future Volume (vph) 1 423 0 1 308 1 7 1 0 1 0 1 0<	SBR
Traffic Volume (vph) 1 423 0 1 308 1 7 1 0 0 0 Future Volume (vph) 1 423 0 1 308 1 7 1 0 1 0 1 0<	
Ideal Flow (vphpl)	26
Lane Width (m) 3.0 3.5 3.5 3.0 3.5 3.5 3.5 3.5 3.5 3.5 Storage Length (m) 30.0 0.0 20.0 20.0 0.0 0.0 0.0 0.0 Storage Lanes 1 0 1 1 0 0 0 Taper Length (m) 2.5 2.5 2.5 2.5	26
Storage Length (m) 30.0 0.0 20.0 20.0 0.0 0.0 0.0 Storage Lanes 1 0 1 1 0 0 0 Taper Length (m) 2.5 2.5 2.5 2.5	1900
Storage Lanes 1 0 1 1 0 0 Taper Length (m) 2.5 2.5 2.5 2.5	3.5
Storage Lanes 1 0 1 1 0 0 Taper Length (m) 2.5 2.5 2.5 2.5	0.0
Taper Length (m) 2.5 2.5 2.5 2.5	0
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
	1.00
Ped Bike Factor 1.00 0.99 0.97	
Frt 0.850 0.865	
Fit Protected 0.950 0.950 0.957	
Satd. Flow (prot) 1685 1824 0 1685 1756 1507 0 1798 0 0 1574	0
Fit Permitted 0.555 0.494	
Satd. Flow (perm) 984 1824 0 874 1756 1507 0 1860 0 0 1574	0
	Yes
Satd. Flow (RTOR) 45 523	
Link Speed (k/h) 30 30 30 30	
Link Distance (m) 164.9 265.9 92.0 121.3	
Travel Time (s) 19.8 31.9 11.0 14.6	
Confl. Peds. (#/hr) 2 2 6	6
Confl. Bikes (#/hr) 1	
	0.90
	0%
Adj. Flow (vph) 1 470 0 1 342 1 8 1 0 0 0	29
Shared Lane Traffic (%)	
Lane Group Flow (voh) 1 470 0 1 342 1 0 9 0 0 29	0
	No
	Right
Median Width(m) 3.0 3.0 0.0 0.0	
Link Offset(m) 0.0 0.0 0.0 0.0	
Crosswalk Width(m) 1.6 1.6 1.6 1.6	
Two way Left Turn Lane	
	1.01
Turning Speed (k/h) 24 14 24 14 24 14 24	14
Number of Detectors 1 2 1 2 1 1 2 1 2	
Detector Template Left Thru Left Thru Right Left Thru Left Thru	
Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 30.5 6.1 30.5	
Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Size(m) 6.1 1.8 6.1 1.8 6.1 1.8 6.1 1.8	
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex	
Detector 1 Channel	
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 2 Position(m) 28.7 28.7 28.7 28.7	
Detector 2 Size(m) 1.8 1.8 1.8	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 1

Lanes, Volumes, Timings 97: Yukon Place & British Colombia Rd

05/20/2021

	٠	-	\rightarrow	•	←	•	4	†	1	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	33.0	33.0		33.0	33.0	33.0	7.0	7.0		7.0	7.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	24.0	24.0		24.0	24.0	
Total Split (s)	48.0	48.0		48.0	48.0	48.0	24.0	24.0		24.0	24.0	
Total Split (%)	66.7%	66.7%		66.7%	66.7%	66.7%	33.3%	33.3%		33.3%	33.3%	
Maximum Green (s)	42.0	42.0		42.0	42.0	42.0	18.0	18.0		18.0	18.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0	-1.0		-1.0			-1.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0		9.0	9.0	9.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0		0	0	
Act Effct Green (s)	59.5	59.5		59.5	59.5	59.5		8.0			8.0	
Actuated g/C Ratio	0.90	0.90		0.90	0.90	0.90		0.12			0.12	
v/c Ratio	0.00	0.29		0.00	0.22	0.00		0.04			0.04	
Control Delay	2.0	2.3		2.0	2.0	0.0		27.5			0.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay	2.0	2.3		2.0	2.0	0.0		27.5			0.1	
LOS	Α	Α		Α	Α	Α		С			Α	
Approach Delay		2.3			2.0			27.5			0.1	
Approach LOS		Α			Α			С			Α	
Intersection Summary												

Intersection Summary									
Area Type:	Other								
Cycle Length: 72									
Actuated Cycle Length: 66.2									
Natural Cycle: 65									
Control Type: Semi Act-Uncoord									
Maximum v/c Ratio: 0	Maximum v/c Ratio: 0.29								
Intersection Signal De	elay: 2.4	Intersection LOS: A							
Intersection Capacity	Utilization 73.3%	ICU Level of Service D							
Analysis Period (min)	15								

Splits and Phases: 97: Yukon Place & British Colombia Rd

Existing PM 05/06/2014 HDR Corporation

Queues

97: Yukon Place & British Colombia Rd

05/20/2021

	•	-	1	—	•	†	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBT	SBT
Lane Group Flow (vph)	1	470	1	342	1	9	29
v/c Ratio	0.00	0.29	0.00	0.22	0.00	0.04	0.04
Control Delay	2.0	2.3	2.0	2.0	0.0	27.5	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	2.0	2.3	2.0	2.0	0.0	27.5	0.1
Queue Length 50th (m)	0.0	0.0	0.0	0.0	0.0	0.9	0.0
Queue Length 95th (m)	0.3	26.3	0.3	18.3	0.0	4.6	0.0
Internal Link Dist (m)		140.9		241.9		68.0	97.3
Turn Bay Length (m)	30.0		20.0		20.0		
Base Capacity (vph)	883	1638	785	1577	1358	536	825
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.00	0.29	0.00	0.22	0.00	0.02	0.04
Intersection Summary							

HCM Signalized Intersection Capacity Analysis 97: Yukon Place & British Colombia Rd

05/20/2021

	۶	→	•	•	←	•	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	₽		ሻ	†	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00			0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		0.99			1.00	
Frt	1.00	1.00		1.00	1.00	0.85		1.00			0.86	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.96			1.00	
Satd. Flow (prot)	1685	1824		1681	1756	1507		1781			1574	
Flt Permitted	0.56	1.00		0.49	1.00	1.00		1.00			1.00	
Satd. Flow (perm)	985	1824		873	1756	1507		1860			1574	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	28	0
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	1	0
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	55.3	55.3		55.3	55.3	55.3		2.6			2.6	
Effective Green, g (s)	56.3	56.3		56.3	56.3	56.3		3.6			3.6	
Actuated g/C Ratio	0.81	0.81		0.81	0.81	0.81		0.05			0.05	
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	793	1469		703	1414	1213		95			81	
v/s Ratio Prot		c0.26			0.19						0.00	
v/s Ratio Perm	0.00			0.00		0.00		c0.00				
v/c Ratio	0.00	0.32		0.00	0.24	0.00		0.09			0.02	
Uniform Delay, d1	1.3	1.8		1.3	1.6	1.3		31.6			31.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	0.0	0.6		0.0	0.4	0.0		0.4			0.1	
Delay (s)	1.3	2.4		1.3	2.0	1.3		32.0			31.6	
Level of Service	Α	Α		Α	Α	Α		С			С	
Approach Delay (s)		2.4			2.0			32.0			31.6	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			3.5	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.31									
Actuated Cycle Length (s)			69.9	Sı	um of lost	time (s)			10.0			
Intersection Capacity Utiliza	tion		73.3%	IC	U Level o	of Service	:		D			
Analysis Period (min)			15									
c Critical Lane Group												

Existing PM 05/06/2014 HDR Corporation

Lanes, Volumes, Timings 222: Lakeshore Blvd & Strachan Ave

05/20/2021

	ၨ	-	•	•	←	•	4	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	ተተተ			4		7	ની	7
Traffic Volume (vph)	420	1302	3	12	1991	0	0	0	0	405	11	324
Future Volume (vph)	420	1302	3	12	1991	0	0	0	0	405	11	324
Ideal Flow (vphpl)	2150	1900	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Storage Length (m)	60.0		0.0	60.0		50.0	0.0		0.0	140.0		50.0
Storage Lanes	1		0	1		0	0		0	1		1
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	0.91	0.91	1.00	*0.95	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor		1.00		1.00								0.94
Frt												0.850
Flt Protected	0.950			0.950						0.950	0.955	
Satd. Flow (prot)	1816	4794	0	1685	5883	0	0	1879	0	1585	1689	1507
Flt Permitted	0.079			0.185						0.950	0.950	
Satd. Flow (perm)	151	4794	0	327	5883	0	0	1879	0	1585	1680	1415
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)												247
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		310.3			196.6			116.5			205.6	
Travel Time (s)		18.6			11.8			10.5			18.5	
Confl. Peds. (#/hr)	4		7	7		4	43					43
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.90	0.95	0.95	0.90	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	5%	7%	0%	0%	3%	0%	0%	0%	0%	1%	0%	0%
Adj. Flow (vph)	467	1371	3	13	2096	0	0	0	0	426	12	341
Shared Lane Traffic (%)										49%		
Lane Group Flow (vph)	467	1374	0	13	2096	0	0	0	0	217	221	341
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	0.93	1.01	1.01	1.09	0.86	1.09	1.01	1.01	1.01	1.09	1.01	1.09
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 5

Lanes, Volumes, Timings 222: Lakeshore Blvd & Strachan Ave

05/20/2021

	•	-	•	•	←	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA					Perm	NA	pm+ov
Protected Phases	5	2		1	6			3			4	5
Permitted Phases	2			6			3			4		4
Detector Phase	5	2		1	6		3	3		4	4	5
Switch Phase												
Minimum Initial (s)	6.0	29.0		6.0	30.0		12.0	12.0		10.0	10.0	6.0
Minimum Split (s)	12.0	35.0		12.0	36.0		21.0	21.0		45.0	45.0	12.0
Total Split (s)	31.0	62.0		16.0	47.0		21.0	21.0		45.0	45.0	31.0
Total Split (%)	21.5%	43.1%		11.1%	32.6%		14.6%	14.6%		31.3%	31.3%	21.5%
Maximum Green (s)	25.0	56.0		10.0	41.0		12.0	12.0		37.0	37.0	25.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		6.0	6.0		5.0	5.0	3.0
Lost Time Adjust (s)	-3.0	-1.0		-1.0	-3.0			-1.0		-1.0	-1.0	-1.0
Total Lost Time (s)	3.0	5.0		5.0	3.0			8.0		7.0	7.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead	Lead	Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Max		None	Max		None	None		None	None	None
Walk Time (s)		7.0			7.0					7.0	7.0	
Flash Dont Walk (s)		22.0			22.0					30.0	30.0	
Pedestrian Calls (#/hr)		2			1					0	0	
Act Effct Green (s)	75.0	68.1		49.1	44.0					38.0	38.0	66.0
Actuated g/C Ratio	0.61	0.55		0.40	0.36					0.31	0.31	0.54
v/c Ratio	0.99	0.52		0.06	1.00					0.44	0.43	0.38
Control Delay	76.6	18.9		13.4	58.3					37.6	37.0	5.1
Queue Delay	0.0	0.0		0.0	17.3					0.0	0.0	0.0
Total Delay	76.6	18.9		13.4	75.6					37.6	37.0	5.1
LOS	Е	В		В	Е					D	D	Α
Approach Delay		33.5			75.2						23.2	
Approach LOS		С			Е						С	
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 12	3											
Natural Cycle: 115												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 1.00												
Intersection Signal Delay:					ntersection							
Intersection Capacity Utiliz	ation 93.3%			IC	CU Level of	of Service	F					
Analysis Period (min) 15												
 User Entered Value 												

HDR Corporation Page 6

Queues

222: Lakeshore Blvd & Strachan Ave

05/20/2021

	•	-	•	←	\	. ↓	1
Lane Group	EBL	EBT	WBL	WBT	SBL	SBT	SBR
Lane Group Flow (vph)	467	1374	13	2096	217	221	341
v/c Ratio	0.99	0.52	0.06	1.00	0.44	0.43	0.38
Control Delay	76.6	18.9	13.4	58.3	37.6	37.0	5.1
Queue Delay	0.0	0.0	0.0	17.3	0.0	0.0	0.0
Total Delay	76.6	18.9	13.4	75.6	37.6	37.0	5.1
Queue Length 50th (m)	98.0	65.4	1.2	176.1	44.2	44.6	9.7
Queue Length 95th (m)	#165.7	98.6	3.9	#211.7	68.5	68.8	24.5
Internal Link Dist (m)		286.3		172.6		181.6	
Turn Bay Length (m)	60.0		60.0		140.0		50.0
Base Capacity (vph)	471	2653	262	2104	489	519	893
Starvation Cap Reductn	0	0	0	108	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.99	0.52	0.05	1.05	0.44	0.43	0.38

Intersection Summary # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 7

HCM Signalized Intersection Capacity Analysis 222: Lakeshore Blvd & Strachan Ave

05/20/2021

	•	-	\rightarrow	•	•	•	•	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተኈ		7	ተተተ			4		7	ર્ન	7
Traffic Volume (vph)	420	1302	3	12	1991	0	0	0	0	405	11	324
Future Volume (vph)	420	1302	3	12	1991	0	0	0	0	405	11	324
Ideal Flow (vphpl)	2150	1900	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Total Lost time (s)	3.0	5.0		5.0	3.0					7.0	7.0	5.0
Lane Util. Factor	1.00	0.91		1.00	*0.95					0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00					1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00					1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00					1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00					0.95	0.95	1.00
Satd. Flow (prot)	1816	4793		1684	5883					1585	1688	1458
Flt Permitted	0.08	1.00		0.19	1.00					0.95	0.95	1.00
Satd. Flow (perm)	151	4793		329	5883					1585	1680	1458
Peak-hour factor, PHF	0.90	0.95	0.95	0.90	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	467	1371	3	13	2096	0	0	0	0	426	12	341
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	122
Lane Group Flow (vph)	467	1374	0	13	2096	0	0	0	0	217	221	219
Confl. Peds. (#/hr)	4		7	7		4	43					43
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	5%	7%	0%	0%	3%	0%	0%	0%	0%	1%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA					Perm	NA	pm+ov
Protected Phases	5	2		1	6			3			4	5
Permitted Phases	2			6			3			4		4
Actuated Green, G (s)	75.6	67.1		47.1	44.6					37.0	37.0	62.0
Effective Green, q (s)	78.6	68.1		49.1	47.6					38.0	38.0	64.0
Actuated g/C Ratio	0.62	0.54		0.39	0.38					0.30	0.30	0.51
Clearance Time (s)	6.0	6.0		6.0	6.0					8.0	8.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0					3.0	3.0	3.0
Lane Grp Cap (vph)	461	2578		165	2211					475	504	737
v/s Ratio Prot	c0.22	0.29		0.00	0.36						001	0.06
v/s Ratio Perm	c0.40	0.20		0.03	0.00					c0.14	0.13	0.09
v/c Ratio	1.01	0.53		0.08	0.95					0.46	0.44	0.30
Uniform Delay, d1	40.9	18.9		23.9	38.3					35.9	35.7	18.2
Progression Factor	1.00	1.00		1.00	1.00					1.00	1.00	1.00
Incremental Delay, d2	45.2	0.8		0.2	10.3					0.7	0.6	0.2
Delay (s)	86.1	19.7		24.1	48.6					36.6	36.3	18.4
Level of Service	F	В		C	D					D	D	В
Approach Delay (s)	•	36.6		U	48.5			0.0			28.6	
Approach LOS		D			D			Α			C	
Intersection Summary												
HCM 2000 Control Delay			40.6	Н	CM 2000	Level of S	ervice		D			
HCM 2000 Volume to Capa	city ratio		0.95		J.71 2000	20701010	0.4100					
Actuated Cycle Length (s)	iony radio		126.6	Si	um of lost	time (s)			25.0			
Intersection Capacity Utiliza	ation		93.3%			of Service			20.0 F			
Analysis Period (min)	20011		15	ic	C LOVEI (JI JUI VIUE						
c Critical Lane Group			10									

Lanes, Volumes, Timings 538: Strachan Ave & King St

05/20/2021

	۶	-	•	•	—	•	4	†	~	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			413		*	ĵ.		7	ĥ	
Traffic Volume (vph)	0	378	77	4	673	68	133	268	84	27	172	27
Future Volume (vph)	0	378	77	4	673	68	133	268	84	27	172	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	25.0		0.0	25.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.91			0.98		0.89	0.97		0.95	0.98	
Frt		0.975			0.986			0.964			0.979	
Flt Protected							0.950			0.950		
Satd. Flow (prot)	0	2539	0	0	2879	0	1486	1572	0	1516	1604	0
Flt Permitted					0.953		0.586			0.383		
Satd. Flow (perm)	0	2539	0	0	2740	0	813	1572	0	579	1604	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		44			19			22			11	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		255.2			358.6			424.1			379.9	
Travel Time (s)		18.4			25.8			38.2			34.2	
Confl. Peds. (#/hr)	71		292	292		71	139		96	96		139
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	0%	6%	17%	100%	4%	0%	2%	1%	0%	0%	1%	0%
Bus Blockages (#/hr)	20	20	20	20	20	20	0	0	0	0	0	0
Adj. Flow (vph)	0	402	82	4	716	72	141	285	89	29	183	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	484	0	0	792	0	141	374	0	29	212	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.22	1.16	1.16	1.22	1.16	1.25	1.16	1.16	1.25	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Existing PM 05/06/2014 Synchro 10 Report HDR Corporation Page 9 Lanes, Volumes, Timings

HDR Corporation

538: Strachan Ave & King St 05/20/2021 Lane Group EBL EBT WBT WBR NBT Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type NA NA Perm NA Perm NA Protected Phases 2 6 4 8 Permitted Phases Detector Phase 2 6 4 8 Switch Phase 20.0 20.0 20.0 20.0 21.0 21.0 21.0 21.0 Minimum Initial (s) Minimum Split (s) 26.0 26.0 26.0 26.0 27.0 27.0 27.0 27.0 Total Split (s) 46.0 46.0 46.0 46.0 34.0 34.0 34.0 34.0 Total Split (%) 57.5% 57.5% 57.5% 57.5% 42.5% 42.5% 42.5% 42.5% Maximum Green (s) 40.0 40.0 40.0 40.0 28.0 28.0 28.0 28.0 Yellow Time (s) 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 3.0 All-Red Time (s) 3.0 3.0 3.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode C-Max C-Max C-Max C-Max Max Max Max Max 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Walk Time (s) 7.0 Flash Dont Walk (s) 13.0 13.0 13.0 13.0 14.0 14.0 14.0 14.0 Pedestrian Calls (#/hr) 100 100 24 24 32 32 100 100 Act Effct Green (s) 41.0 41.0 29.0 29.0 29.0 29.0 Actuated g/C Ratio 0.51 0.36 0.36 0.36 0.36 0.51 v/c Ratio 0.37 0.56 0.48 0.64 0.14 0.36 Control Delay 11.5 5.5 25.7 24.5 31.0 32.1 0.0 0.0 0.0 0.0 Queue Delay 0.0 0.0 Total Delay 11.5 25.7 24.5 31.0 32.1 5.5 LOS В Α С С С С Approach Delay 11.5 32.0 Approach LOS В Α С С Intersection Summary Area Type: CBD Cycle Length: 80 Actuated Cycle Length: 80 Offset: 50 (63%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.64 Intersection Signal Delay: 15.0 Intersection LOS: B Intersection Capacity Utilization 79.4% ICU Level of Service D Analysis Period (min) 15 Splits and Phases: 538: Strachan Ave & King St **↑**†ø4 ²Ø2 (R) ₹ø6 (R) ₩ Ø8

Page 10

538: Strachan Ave & King St

05/20/2021

	-	-	1	†	-	ţ
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	484	792	141	374	29	212
v/c Ratio	0.37	0.56	0.48	0.64	0.14	0.36
Control Delay	11.5	5.5	25.7	24.5	31.0	32.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	11.5	5.5	25.7	24.5	31.0	32.1
Queue Length 50th (m)	19.5	8.3	17.7	44.6	4.3	31.5
Queue Length 95th (m)	29.8	16.3	m24.6	m62.8	m7.8	m47.9
Internal Link Dist (m)	231.2	334.6		400.1		355.9
Turn Bay Length (m)			25.0		25.0	
Base Capacity (vph)	1322	1413	294	583	209	588
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.37	0.56	0.48	0.64	0.14	0.36

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 538: Strachan Ave & King St

						,		,	-	•	•
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	414			414			1		7	1 2	
0	378	77	4	673	68	133	268	84	27	172	27
0	378	77	4	673	68	133	268	84	27	172	27
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
	5.0			5.0		5.0	5.0		5.0	5.0	
	0.95			0.95		1.00	1.00		1.00	1.00	
	0.91			0.99		1.00	0.97		1.00	0.98	
	1.00			1.00		0.89	1.00		0.95	1.00	
	0.97			0.99		1.00	0.96		1.00	0.98	
	1.00			1.00		0.95	1.00		0.95	1.00	
	2538			2875		1318	1572		1437	1604	
							1.00				
	2538			2741		814	1572		580	1604	
0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
0	402				72	141	285	89	29	183	29
-		-	_	-	-	-			-	7	0
	463			783			360	_		205	0
											139
											0%
20		20			20			0			0
			Perm			Perm			Perm		
	2			6			4			8	
2			6						_		
	-										
				1404		295			210		
	0.18						c0.23			0.13	
						-					
						C			C		
	В			А			C			C	
		15.2	H	CM 2000	Level of S	Service		В			
ratio		0.59									
		80.0			. ,			10.0			
		79.4%	IC	U Level o	of Service			D			
		15									
	0.94 0 0 0 0 0 0 0 20 2 2	0 378 0 378 1900 1900 3.5 3.5 5.0 0.95 0.91 1.00 2538 1.00 2538 1.00 2538 1.00 2538 1.00 2538 20 40.2 0 463 71 0 463 71 0 463 72 2 2 40.0 41.0 0.51 6.0 3.0 1300 0.18 0.36 11.6 1.00 0.8 12.4 B 12.4 B	0 378 77 0 378 77 1900 1900 1900 3.5 3.5 3.5 5.0 0.95 0.91 1.00 0.97 1.00 2538 1.00 2538 1.00 2538 0.94 0.94 0.94 0 402 82 0 21 0 0 463 0 71 292 0% 6% 17% 20 20 20 NA 2 2 40.0 41.0 0.51 6.0 3.0 1300 0.18 0.36 11.6 1.00 0.8 12.4 B 12.4 B 12.4 B 12.4 B 12.4 B 88.0 0 79.4%	0 378 77 4 0 378 77 4 1900 1900 1900 1900 3.5 3.5 3.5 3.5 5.0 0.95 0.91 1.00 0.97 1.00 2558 1.00 2558 1.00 2538 0.94 0.94 0.94 0.94 0 402 82 4 0 21 0 0 0 0 463 0 0 0 463 0 0 71 292 292 0% 6% 17% 100% 20 20 20 20 0% 6% 17% 100% 20 20 6 40.0 41.0 0.51 6.0 3.0 1300 0.18 0.36 11.6 1.00 0.8 12.4 B 15.2 He	0 378 77 4 673 0 378 77 4 673 1900 1900 1900 1900 1900 3.5 3.5 3.5 3.5 3.5 3.5 5.0 0.95 0.95 0.91 0.99 1.00 1.00 0.97 0.99 1.00 0.95 2538 2875 1.00 0.95 2538 2741 0.94 0.94 0.94 0.94 0.402 82 4 716 0 21 0 0 9 0 463 0 0 783 71 292 292 0% 6% 17% 100% 4% 20 20 20 20 20 0% 6% 17% 100% 4% 2 6 2 6 2 6 40.0 40.0 40.0 41.0 41.0 0.51 6.0 6.0 6.0 3.0 3.0 3.0 1300 1404 0.18 0.29 0.36 0.56 11.6 13.3 1.00 0.30 0.8 1.5 12.4 5.5 B A 12.4 6 12.4	0 378 77 4 673 68 0 378 77 4 673 68 1900 1900 1900 1900 1900 1900 3.5 3.5 3.5 3.5 3.5 3.5 3.5 5.0 0.95 0.95 0.91 0.99 1.00 1.00 0.97 0.99 1.00 1.00 25538 2875 1.00 0.95 2538 2741 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.96 82 4 716 72 0 21 0 0 9 0 0 463 0 0 783 0 71 292 292 71 0% 6% 17% 100% 4% 0% 20 20 20 20 20 20 20 0 463 0 0 783 0 0 783 0 0 783 0 0 402 82 4 716 72 0 21 0 0 9 0 0 463 0 0 783 0 0 0 463 0 0 783 0 0 0 463 0 0 783 0 0 0 463 0 0 783 0 0 0 463 0 0 783 0 0 0 463 0 0 783 0 0 0 463 0 0 783 0 0 0 463 0 0 783 0 0 0 100 463 0 0 783 0 0 0 100 463 0 0 0 0 0 0 100 463 0 0 0 0 0 0 0 100 463 0 0 0 0 0 0 0 100 100 100 100 100 100 1	0 378 77 4 673 68 133 1900 100 0.50 5.0 5.0 5.0 0.95 5.0 0.95 1.00 0.99 1.00 0.99 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.08 1.00 1.07 1.00 1.09 9.0 1.00 1.00 1.00 <td< td=""><td>0 378 77 4 673 68 133 268 0 378 77 4 673 68 133 268 1900 1900 1900 1900 1900 1900 1900 3.5 3.5 3.5 3.5 3.5 3.5 3.0 3.5 5.0 0.95 0.95 1.00 1.00 0.97 1.00 0.97 1.00 0.99 1.00 0.95 1.00 0.97 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00</td><td>0 378 77 4 673 68 133 268 84 1900 3.5 <</td><td>0 378 77 4 673 68 133 268 84 27 1900 <t< td=""><td>0 378 77 4 673 68 133 268 84 27 172 0 378 77 4 673 68 133 268 84 27 172 1900 1900 1900 1900 1900 1900 1900 190</td></t<></td></td<>	0 378 77 4 673 68 133 268 0 378 77 4 673 68 133 268 1900 1900 1900 1900 1900 1900 1900 3.5 3.5 3.5 3.5 3.5 3.5 3.0 3.5 5.0 0.95 0.95 1.00 1.00 0.97 1.00 0.97 1.00 0.99 1.00 0.95 1.00 0.97 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00	0 378 77 4 673 68 133 268 84 1900 3.5 <	0 378 77 4 673 68 133 268 84 27 1900 <t< td=""><td>0 378 77 4 673 68 133 268 84 27 172 0 378 77 4 673 68 133 268 84 27 172 1900 1900 1900 1900 1900 1900 1900 190</td></t<>	0 378 77 4 673 68 133 268 84 27 172 0 378 77 4 673 68 133 268 84 27 172 1900 1900 1900 1900 1900 1900 1900 190

Existing PM 05/06/2014 HDR Corporation

05/20/2021

05/20/2021

	۶	-	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			414			414			414	
Traffic Volume (vph)	81	359	53	55	574	92	45	387	46	113	235	74
Future Volume (vph)	81	359	53	55	574	92	45	387	46	113	235	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.96			0.96			0.97			0.93	
Frt		0.984			0.981			0.986			0.974	
Flt Protected		0.992			0.996			0.995			0.987	
Satd. Flow (prot)	0	2879	0	0	2849	0	0	2707	0	0	2611	0
Flt Permitted		0.654			0.859			0.871			0.693	
Satd. Flow (perm)	0	1880	0	0	2437	0	0	2345	0	0	1791	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		21			26			18			33	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		291.1			316.7			212.5			385.1	
Travel Time (s)		21.0			22.8			15.3			27.7	
Confl. Peds. (#/hr)	190	21.0	200	200		190	235	10.0	160	160		235
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	6%	3%	4%	2%	2%	4%	7%	9%	9%	5%	13%	5%
Bus Blockages (#/hr)	10	10	10	20	20	20	10	24	24	0	14	14
Adj. Flow (vph)	93	413	61	63	660	106	52	445	53	130	270	85
Shared Lane Traffic (%)	00	110	01		000	100	02	110		100	210	00
Lane Group Flow (vph)	0	567	0	0	829	0	0	550	0	0	485	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	0.0	rugiit	Loit	0.0	rugiit	Loit	0.0	rugiit	Loit	0.0	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.16	1.19	1.16	1.16	1.22	1.16	1.16	1.23	1.16	1.16	1.20	1.16
Turning Speed (k/h)	24	1.13	14	24	1.22	1.10	24	1.20	1.10	24	1.20	14
Turn Type	Perm	NA		Perm	NA	17	pm+pt	NA	17	Perm	NA	17
Protected Phases	1 Cilli	2		1 Cilli	6		3	8		1 Cilli	4	
Permitted Phases	2			6	U		8	0		4	-	
Minimum Split (s)	27.0	27.0		27.0	27.0		10.0	27.0		27.0	27.0	
Total Split (s)	40.0	40.0		40.0	40.0		10.0	40.0		30.0	30.0	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		12.5%	50.0%		37.5%	37.5%	
Maximum Green (s)	34.0	34.0		34.0	34.0		6.0	34.0		24.0	24.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		1.0	2.0		2.0	2.0	
Lost Time Adjust (s)	2.0	-1.0		2.0	-1.0		1.0	-1.0		2.0	-2.0	
Total Lost Time (s)		5.0			5.0			5.0			4.0	
		5.0			5.0		Lead	5.0		Lon		
Lead/Lag										Lag	Lag	
Lead-Lag Optimize?	7.0	7.0		7.0	7.0		Yes	7.0		Yes	Yes 7.0	
Walk Time (s)										7.0		
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		100	100			100		100	100	
Act Effct Green (s)		35.0			35.0			35.0			26.0	
Actuated g/C Ratio		0.44			0.44			0.44			0.32	

Existing PM 05/06/2014 Synchro 10 Report HDR Corporation Page 13 Lanes, Volumes, Timings 539: Dufferin St & King St

EBL EBT WBT NBT Lane Group v/c Ratio 0.68 0.77 0.52 0.80 Control Delay 21.8 23.5 19.8 35.1 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 21.8 23.5 19.8 35.1 LOS D Approach Delay Approach LOS 21.8 23.5 19.8 35.1 С

05/20/2021

Page 14

Intersection Summary Area Type:

Cycle Length: 80
Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green

CBD

Natural Cycle: 65 Control Type: Pretimed Maximum v/c Ratio: 0.80

Intersection Signal Delay: 24.6
Intersection Capacity Utilization 92.0% Intersection LOS: C
ICU Level of Service F

Analysis Period (min) 15

HDR Corporation

Splits and Phases: 539: Dufferin St & King St

Existing PM 05/06/2014 Synchro 10 Report 539: Dufferin St & King St

05/20/2021

-	←	- ↑	. ↓
			*
EBT	WBT	NBT	SBT
567	829	550	485
0.68	0.77	0.52	0.80
21.8	23.5	19.8	35.1
0.0	0.0	0.0	0.0
21.8	23.5	19.8	35.1
21.3	38.4	29.7	32.7
33.5	55.8	m47.1	#54.0
267.1	292.7	188.5	361.1
834	1080	1058	604
0	0	0	0
0	0	0	0
0	0	0	0
0.68	0.77	0.52	0.80
	0.68 21.8 0.0 21.8 21.3 33.5 267.1 834 0	567 829 0.68 0.77 21.8 23.5 0.0 0.0 21.8 23.5 21.3 38.4 33.5 55.8 267.1 292.7 834 1080 0 0 0 0	567 829 550 0.68 0.77 0.52 21.8 23.5 19.8 0.0 0.0 0.0 21.8 23.5 19.8 21.3 38.4 29.7 33.5 55.8 m47.1 267.1 292.7 188.5 834 1080 1058 0 0 0 0 0 0

Intersection Summary

HCM Signalized Intersection Capacity Analysis 539: Dufferin St & King St

05/20/2021

	۶	→	•	•	←	•	4	†	/	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			414			414	
Traffic Volume (vph)	81	359	53	55	574	92	45	387	46	113	235	74
Future Volume (vph)	81	359	53	55	574	92	45	387	46	113	235	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			4.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.97			0.97			0.98			0.95	
Flpb, ped/bikes		0.99			0.99			0.99			0.98	
Frt		0.98			0.98			0.99			0.97	
Flt Protected		0.99			1.00			1.00			0.99	
Satd. Flow (prot)		2851			2826			2682			2550	
Flt Permitted		0.65			0.86			0.87			0.69	
Satd. Flow (perm)		1880			2436			2347			1790	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	93	413	61	63	660	106	52	445	53	130	270	85
RTOR Reduction (vph)	0	12	0	0	15	0	0	10	0	0	22	0
Lane Group Flow (vph)	0	555	0	0	814	0	0	540	0	0	463	0
Confl. Peds. (#/hr)	190		200	200		190	235		160	160		235
Heavy Vehicles (%)	6%	3%	4%	2%	2%	4%	7%	9%	9%	5%	13%	5%
Bus Blockages (#/hr)	10	10	10	20	20	20	10	24	24	0	14	14
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		2			6		3	8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)		34.0			34.0			34.0			24.0	
Effective Green, g (s)		35.0			35.0			35.0			26.0	
Actuated g/C Ratio		0.44			0.44			0.44			0.32	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Lane Grp Cap (vph)		822			1065			1056			581	
v/s Ratio Prot								c0.04				
v/s Ratio Perm		0.30			c0.33			0.18			c0.26	
v/c Ratio		0.68			0.76			0.51			0.80	
Uniform Delay, d1		18.0			19.0			16.3			24.6	
Progression Factor		0.98			0.99			1.16			1.00	
Incremental Delay, d2		4.3			4.8			1.4			10.8	
Delay (s)		21.8			23.6			20.3			35.4	
Level of Service		С			С			С			D	
Approach Delay (s)		21.8			23.6			20.3			35.4	
Approach LOS		С			С			С			D	
Intersection Summary												
HCM 2000 Control Delay			24.8	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ity ratio		0.75									
Actuated Cycle Length (s)			80.0	Sı	um of lost	time (s)			12.0			
Intersection Capacity Utilizati	ion		92.0%	IC	U Level o	of Service	9		F			
Analysis Period (min)			15									

c Critical Lane Group

Sth percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	—	•	1	†	~	/	ļ	-✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	ĵ.			ની	7	7	£		Ť	ĵ.	
Traffic Volume (vph)	139	4	208	77	88	60	125	347	87	87	555	65
Future Volume (vph)	139	4	208	77	88	60	125	347	87	87	555	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	25.0		0.0	0.0		50.0	30.0		0.0	25.0		0.0
Storage Lanes	1		0	0		1	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.91	0.87			0.97	0.83		0.98		0.98	0.99	
Frt		0.853				0.850		0.970			0.984	
Flt Protected	0.950				0.977		0.950			0.950		
Satd. Flow (prot)	1589	1307	0	0	1605	1507	1652	1667	0	1574	1705	0
Flt Permitted	0.584				0.623		0.172			0.346		
Satd. Flow (perm)	889	1307	0	0	988	1246	299	1667	0	561	1705	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		219				152		10			5	
Link Speed (k/h)		30			50			40			40	
Link Distance (m)		143.4			229.0			205.6			241.4	
Travel Time (s)		17.2			16.5			18.5			21.7	
Confl. Peds. (#/hr)	56		53	53		56	33		29	29		33
Confl. Bikes (#/hr)						22			26			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	6%	12%	6%	1%	26%	0%	2%	8%	2%	7%	8%	1%
Adj. Flow (vph)	146	4	219	81	93	63	132	365	92	92	584	68
Shared Lane Traffic (%)												
Lane Group Flow (vph)	146	223	0	0	174	63	132	457	0	92	652	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.01	1.01	1.09	1.09	1.01	1.01	1.09	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5	2.0	2.0	30.5		2.0	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8	2.0	2.0	1.8		2.0	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)	2.0	28.7		2.0	28.7			28.7		2.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
		J A			J /			J A			J A	

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 17 Lanes, Volumes, Timings 571: Strachan Ave & Canada Blvd/Fleet St

Lane Group	Ø10	Ø12	Ø14	Ø16	
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Ideal Flow (vphpl)					
Lane Width (m)					
Storage Length (m)					
Storage Lanes					
Taper Length (m)					
Lane Util. Factor					
Ped Bike Factor					
Frt					
Flt Protected					
Satd. Flow (prot)					
Flt Permitted					
Satd. Flow (perm)					
Right Turn on Red					
Satd. Flow (RTOR)					
Link Speed (k/h)					
Link Distance (m)					
Travel Time (s)					
Confl. Peds. (#/hr)					
Confl. Bikes (#/hr)					
Peak Hour Factor					
Heavy Vehicles (%)					
Adj. Flow (vph)					
Shared Lane Traffic (%)					
Lane Group Flow (vph)					
Enter Blocked Intersection					
Lane Alignment					
Median Width(m)					
Link Offset(m)					
Crosswalk Width(m)					
Two way Left Turn Lane					
Headway Factor					
Turning Speed (k/h)					
Number of Detectors					
Detector Template					
Leading Detector (m)					
Trailing Detector (m)					
Detector 1 Position(m)					
Detector 1 Size(m)					
Detector 1 Type					
Detector 1 Channel					
Detector 1 Extend (s)					
Detector 1 Queue (s)					
Detector 1 Delay (s)					
Detector 2 Position(m)					
Detector 2 Size(m)					
Detector 2 Type					

₩ø6

Existing PM 05/06/2014 HDR Corporation

Synchro 10 Report Page 19

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT	<i>~</i> = < < + <i>></i> + <i>+</i>	•	-	•	•	-	•	
Detector 2 Extend (s)	BL WBT WBR NBL NBT NBR SBL SBT	WBR	WBT	WBL	EBR	EBT	EBL	Lane Group
Tum Type								Detector 2 Channel
Tum Type	0.0 0.0 0.0		0.0			0.0		Detector 2 Extend (s)
Protected Phases	erm NA Perm Perm NA Perm NA	Perm	NA	Perm		NA	Perm	
Detector Phase	8 2 6		8			4		
Switch Phase Swit	8 8 2 6	8		8			4	Permitted Phases
Minimum Initial (s) 32.0 32.0 32.0 32.0 32.0 32.0 29.0 29.0 29.0 29.0 39.0 36.0	8 8 8 2 2 6 6	8	8	8		4	4	Detector Phase
Minimum Initial (s) 32.0 32.0 32.0 32.0 32.0 32.0 29.0 29.0 29.0 29.0 39.0 36.0								Switch Phase
Minimum Split (s) 39.0 39.0 39.0 39.0 39.0 36.0 3	2.0 32.0 32.0 29.0 29.0 29.0 29.0	32.0	32.0	32.0		32.0	32.0	
Total Split (s)								
Total Split (%) 27.8% 27.8% 27.8% 27.8% 27.8% 27.8% 41.7% 41		40.0		40.0		40.0	40.0	
Maximum Green (s) 33.0 33.0 33.0 33.0 33.0 53.0 53.0 53.0		27.8%	27.8%	27.8%				
Yellow Time (s)								
All-Red Time (s) 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0								
Lost Time Adjust (s)								
Total Lost Time (s)				0.0				
Lead-Lag Optimizer Vehicle Extension (s) 3.0 3								
Lead-Lag Optimize? Vehicle Extension (s) 3.0	0.0 0.0 0.0 0.0	0.0	0.0			0.0	0.0	
Vehicle Extension (s) 3.0 7.0								
Recall Mode	30 30 30 30 30 30	3.0	3.0	3.0		3.0	3.0	
Walk Time (s) 7.0 <								(/
Flash Dont Walk (s)								
Pedestrian Calls (#/hr)								
Act Effct Green (s) 34.6 34.6 34.6 34.6 54.9 54.9 54.9 54.9 Actuated g/C Ratio 0.31 0.31 0.31 0.31 0.31 0.49 0.49 0.49 0.49 0.40 v/c Ratio 0.53 0.40 0.57 0.13 0.90 0.56 0.34 0.78 0.00 0.50 0.53 0.40 0.57 0.13 0.90 0.56 0.34 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00								
Actuated g/C Ratio 0.31 0.31 0.31 0.31 0.49 0.49 0.49 0.49 v/c Ratio 0.53 0.40 0.57 0.13 0.90 0.56 0.34 0.78 Control Delay 44.4 7.5 44.9 0.6 85.5 25.7 26.2 34.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 Total Delay 44.4 7.5 44.9 0.6 85.5 25.9 26.2 34.2 LOS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				13				\ /
v/c Ratio 0.53 0.40 0.57 0.13 0.90 0.56 0.34 0.78 Control Delay 44.4 7.5 44.9 0.6 85.5 25.7 26.2 34.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 44.4 7.5 44.9 0.6 85.5 25.9 26.2 34.2 LOS D A D A F C C C Approach Delay 22.1 33.1 39.2 33.2 Approach LOS C C C D C Intersection Summary Area Type: Other Cycle Length: 144 Actuated Cycle Length: 112 Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St								
Control Delay 44.4 7.5 44.9 0.6 85.5 25.7 26.2 34.2 Queue Delay 0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Queue Delay								
Total Delay								
LOS D A D A F C C C Approach Delay 22.1 33.1 39.2 33.2 Approach LOS C C C C D D C C Intersection Summary Area Type: Other Cycle Length: 144 Actuated Cycle Length: 112 Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St								
Approach Delay 22.1 33.1 39.2 33.2 Approach LOS C C C D C C D C C Intersection Summary Area Type: Other Cycle Length: 144 Actuated Cycle Length: 112 Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St								
Approach LOS C C C D C Intersection Summary Area Type: Other Cycle Length: 144 Actuated Cycle Length: 112 Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St								
Intersection Summary Area Type: Other Cycle Length: 144 Actuated Cycle Length: 112 Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St	****							
Area Type: Other Cycle Length: 144 Actuated Cycle Length: 112 Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St	0 5							••
Cycle Length: 144 Actuated Cycle Length: 112 Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St							0.11	
Actuated Cycle Length: 112 Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St							Otner	
Natural Cycle: 135 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St								
Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St							12	
Maximum v/c Ratio: 0.90 Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St								
Intersection Signal Delay: 32.9 Intersection LOS: C Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St							ncoord	
Intersection Capacity Utilization 131.0% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St								
Analysis Period (min) 15 Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St						.,		
Splits and Phases: 571: Strachan Ave & Canada Blvd/Fleet St	ICU Level of Service H	if Service	CU Level	10		/ o	zation 131.0°	
								Analysis Period (min) 15
	St			leet St	da Blvd/F	ve & Cana	: Strachan A	Splits and Phases: 571:
↑ø2 * \$ø10 • ø4	•	1	10					4

Lane Group	Ø10	Ø12	Ø14	Ø16	
Detector 2 Channel					
Detector 2 Extend (s)					
Turn Type					
Protected Phases	10	12	14	16	
Permitted Phases					
Detector Phase					
Switch Phase					
Minimum Initial (s)	7.0	7.0	7.0	7.0	
Minimum Split (s)	15.0	15.0	15.0	15.0	
Total Split (s)	22.0	22.0	22.0	22.0	
Total Split (%)	15%	15%	15%	15%	
Maximum Green (s)	14.0	14.0	14.0	14.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	4.0	4.0	4.0	4.0	
Lost Time Adjust (s)					
Total Lost Time (s)					
Lead/Lag					
Lead-Lag Optimize?					
Vehicle Extension (s)	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	None	
Walk Time (s)	0.0	0.0	0.0	0.0	
Flash Dont Walk (s)	0.0	0.0	0.0	0.0	
Pedestrian Calls (#/hr)	16	16	16	16	
Act Effct Green (s)					
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
LOS					
Approach Delay					
Approach LOS					
Intersection Summary					
intersection Summary					

Lanes, Volumes, Timings 571: Strachan Ave & Canada Blvd/Fleet St

	•	-	←	•	4	†	-	ļ	
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	146	223	174	63	132	457	92	652	
v/c Ratio	0.53	0.40	0.57	0.13	0.90	0.56	0.34	0.78	
Control Delay	44.4	7.5	44.9	0.6	85.5	25.7	26.2	34.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	
Total Delay	44.4	7.5	44.9	0.6	85.5	25.9	26.2	34.2	
Queue Length 50th (m)	22.1	0.5	26.8	0.0	20.0	51.9	9.3	88.4	
Queue Length 95th (m)	57.6	21.0	#67.0	0.0	#77.7	128.4	32.5	#228.9	
Internal Link Dist (m)		119.4	205.0			181.6		217.4	
Turn Bay Length (m)	25.0			50.0	30.0		25.0		
Base Capacity (vph)	274	554	304	489	146	822	274	838	
Starvation Cap Reductn	0	0	0	0	0	46	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.53	0.40	0.57	0.13	0.90	0.59	0.34	0.78	
Intono etian Communica									

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	-	•	•	←	•	1	†	/	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations	7	ĵ»			ર્ન	7	ň	ĵ»		7	ĥ	
Traffic Volume (vph)	139	4	208	77	88	60	125	347	87	87	555	6
Future Volume (vph)	139	4	208	77	88	60	125	347	87	87	555	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Lane Width	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.
Total Lost time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.88			1.00	0.85	1.00	0.98		1.00	0.99	
Flpb, ped/bikes	0.92	1.00			0.97	1.00	1.00	1.00		0.98	1.00	
Frt	1.00	0.85			1.00	0.85	1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1463	1333			1556	1280	1652	1672		1538	1708	
Flt Permitted	0.58	1.00			0.62	1.00	0.17	1.00		0.35	1.00	
Satd. Flow (perm)	899	1333			992	1280	300	1672		560	1708	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Adj. Flow (vph)	146	4	219	81	93	63	132	365	92	92	584	6
RTOR Reduction (vph)	0	157	0	0	0	45	0	6	0	0	3	
Lane Group Flow (vph)	146	66	0	0	174	18	132	451	0	92	649	
Confl. Peds. (#/hr)	56	00	53	53		56	33		29	29	0.10	3
Confl. Bikes (#/hr)						22			26			
Heavy Vehicles (%)	6%	12%	6%	1%	26%	0%	2%	8%	2%	7%	8%	19
Turn Type	Perm	NA	070	Perm	NA	Perm	Perm	NA	270	Perm	NA	- 17
Protected Phases	1 Cilli	4		1 Cilli	8	I CIIII	1 Cilli	2		I CIIII	6	
Permitted Phases	4			8	·	8	2			6		
Actuated Green, G (s)	33.5	33.5		U	33.5	33.5	53.9	53.9		53.9	53.9	
Effective Green, q (s)	34.5	34.5			34.5	34.5	54.9	54.9		54.9	54.9	
Actuated g/C Ratio	0.28	0.28			0.28	0.28	0.45	0.45		0.45	0.45	
Clearance Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	253	376			280	361	134	751		251	767	
v/s Ratio Prot	200	0.05			200	301	134	0.27		201	0.38	
v/s Ratio Perm	0.16	0.05			c0.18	0.01	c0.44	0.27		0.16	0.30	
v/c Ratio	0.16	0.18			0.62	0.01	0.99	0.60		0.16	0.85	
Uniform Delay, d1	37.6	33.1			38.2	31.9	33.2	25.4		22.2	29.9	
Progression Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
	9.3	1.00			10.0	0.3	73.9	3.5		4.1	11.1	
Incremental Delay, d2	46.9	34.1			48.1	32.2	107.1	28.9		26.3	41.0	
Delay (s)	40.9 D	34.1 C			40.1 D			20.9 C			41.0 D	
Level of Service	U					С	F			С		
Approach Delay (s) Approach LOS		39.2 D			43.9 D			46.5 D			39.2 D	
Intersection Summary												
			42.0	11	OM 2000	Level of	Comina		D			
HCM 2000 Control Delay	oite rotio			Н	UN 2000	Level of	Service		ט			
HCM 2000 Volume to Capa	city ratio		0.80	^	61	/ \			00.0			
Actuated Cycle Length (s)			122.2		um of los	. ,			28.0			
Intersection Capacity Utiliza	tion		131.0%	IC	U Level	of Service			Н			
Analysis Period (min)			15									

Lanes, Volumes, Timings 1344: Lakeshore Blvd & British Colombia Rd

05/20/2021

Lane Group EBL EBT EBR WBL WBT WBT NBL NBT NBR SBL SBT SBR		ᄼ	→	•	•	—	•	•	†	~	/	ļ	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vph)	Lane Configurations	7	^				77		ተተ _ጉ				
Ideal Flow (vphpt)	Traffic Volume (vph)	54	386	0	0	0	567	0	2322	4	0	0	0
Lane Width (m)	Future Volume (vph)	54	386	0	0	0	567	0	2322	4	0	0	0
Storage Length (m)	Ideal Flow (vphpl)	1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes	Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Taper Length (m)	Storage Length (m)	15.0		0.0	0.0		80.0	0.0		0.0	0.0		0.0
Lane Util. Factor	Storage Lanes	1		0	0		1	0		0	0		0
Fit Protected	Taper Length (m)	2.5			2.5			2.5			2.5		
Fit Protected 0.950 Satd. Flow (prot) 1652 1939 0 0 0 0 2756 0 5029 0 0 0 0 0 0 0 0 0	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.88	1.00	0.91	0.91	1.00	1.00	1.00
Satd. Flow (prot) 1652 1939 0 0 0 2756 0 5029 0 0 0 0 0	Frt						0.850						
Fit Permitted	Flt Protected	0.950											
Satd. Flow (perm) 1652 1939 0 0 0 2756 0 5029 0 0 0 0 0	Satd. Flow (prot)	1652	1939	0	0	0	2756	0	5029	0	0	0	0
Right Turn on Red	Flt Permitted	0.950											
Satd. Flow (RTOR) 76	Satd. Flow (perm)	1652	1939	0	0	0	2756	0	5029	0	0	0	0
Link Speed (k/h) 60 30 60 60 Link Distance (m) 411.9 164.9 800.6 492.6 Travel Time (s) 24.7 19.8 48.0 29.6 Peak Hour Factor 0.95 0.0 0.0 0.0 0.0 0.0	Right Turn on Red	Yes		Yes			Yes			Yes			Yes
Link Distance (m) 411.9 164.9 800.6 492.6 Travel Time (s) 24.7 19.8 48.0 29.6 Peak Hour Factor 0.95	Satd. Flow (RTOR)	76					293						
Link Distance (m) 411.9 164.9 800.6 492.6 Travel Time (s) 24.7 19.8 48.0 29.6 Peak Hour Factor 0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	Link Speed (k/h)		60			30			60			60	
Travel Time (s) 24.7 19.8 48.0 29.6 Peak Hour Factor 0.95 0			411.9			164.9			800.6			492.6	
Peak Hour Factor 0.95 0.			24.7			19.8			48.0			29.6	
Adj. Flow (vph) 57 406 0 0 597 0 2444 4 0 0 0 Shared Lane Traffic (%) Shared Lane Traffic (%) Shared Lane Group Flow (vph) 57 406 0 0 0 597 0 2448 0 </td <td></td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td></td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td>0.95</td>		0.95	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	0.95
Shared Lane Traffic (%) Lane Group Flow (vph) 57 406 0 0 0 597 0 2448 0 0 0 0 0													
Lane Group Flow (vph) 57 406 0 0 597 0 2448 0 0 0 0 Enter Blocked Intersection No 3.0 3.0 3.0 3													
Enter Blocked Intersection No No No No No No No		57	406	0	0	0	597	0	2448	0	0	0	0
Lane Alignment				No	No	No		No		No	No	No	
Median Width(m) 3.0 3.0 3.0 3.0 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 1.6 1.6 1.6 1.6 Two way Left Turn Lane 1.09 0.95 1.01		Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 1.6 1.6 1.6 1.6 Two way Left Turn Lane Headway Factor 1.09 0.95 1.01<				J -			J .			<u> </u>			J
Crosswalk Width(m) 1.6 1.0 1.01													
Two way Left Turn Lane Headway Factor 1.09 0.95 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	,												
Headway Factor 1.09 0.95 1.01													
Turning Speed (k/h) 24 14 <td></td> <td>1.09</td> <td>0.95</td> <td>1.01</td>		1.09	0.95	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Number of Detectors 1 2 1 2 Detector Template Left Thru Right Thru Leading Detector (m) 6.1 30.5 6.1 30.5 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 6.1 1.8 6.1 1.8 Detector 1 Type CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex													
Leading Detector (m) 6.1 30.5 6.1 30.5 Trailing Detector (m) 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 Detector 1 Size(m) 6.1 1.8 6.1 1.8 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex			2				1		2				
Leading Detector (m) 6.1 30.5 6.1 30.5 Trailing Detector (m) 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 Detector 1 Size(m) 6.1 1.8 6.1 1.8 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex							Right						
Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 6.1 1.8 6.1 1.8 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex													
Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 6.1 1.8 6.1 1.8 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex													
Detector 1 Size(m) 6.1 1.8 6.1 1.8 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex CI+Ex													
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex													
Detector 1 Channel													
			· ·										
Detector 1 Extend (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Detector 1 Extend (s)	0.0	0.0				0.0		0.0				
Detector 1 Queue (s) 0.0 0.0 0.0 0.0													
Detector 1 Delay (s) 0.0 0.0 0.0 0.0							0.0		0.0				
Detector 2 Position(m) 28.7 28.7		0.0					0.0						
Detector 2 Size(m) 1.8 1.8													
Detector 2 Type CI+Ex CI+Ex													
Detector 2 Channel			3. LX						J X				
Detector 2 Extend (s) 0.0 0.0			0.0						0.0				
Tum Type Perm NA Perm NA		Perm					Perm						
Protected Phases 4 2													

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 23 Lanes, Volumes, Timings

1344: Lakeshore Blvd & British Colombia Rd

05/20/2021

	۶	-	•	•	←	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4					9						
Detector Phase	4	4				9		2				
Switch Phase												
Minimum Initial (s)	7.0	7.0				7.0		22.0				
Minimum Split (s)	13.0	13.0				30.0		29.0				
Total Split (s)	29.0	29.0				33.0		82.0				
Total Split (%)	20.1%	20.1%				22.9%		56.9%				
Maximum Green (s)	23.0	23.0				27.0		75.0				
Yellow Time (s)	4.0	4.0				4.0		4.0				
All-Red Time (s)	2.0	2.0				2.0		3.0				
Lost Time Adjust (s)	-1.0	-3.0				-1.0		-1.0				
Total Lost Time (s)	5.0	3.0				5.0		6.0				
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Recall Mode	None	None				None		None				
Walk Time (s)	0.0	0.0						7.0				
Flash Dont Walk (s)	0.0	0.0						15.0				
Pedestrian Calls (#/hr)	0	0						0				
Act Effct Green (s)	24.0	26.0				22.2		75.7				
Actuated g/C Ratio	0.17	0.19				0.16		0.55				
v/c Ratio	0.16	1.11				0.87		0.89				
Control Delay	6.4	131.2				42.0		33.1				
Queue Delay	0.0	0.0				0.0		0.0				
Total Delay	6.4	131.2				42.0		33.1				
LOS	Α	F				D		С				
Approach Delay		115.8			42.0			33.1				
Approach LOS		F			D			С				
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 13	88											
Natural Cycle: 120												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 1.11												
Intersection Signal Delay:					tersection							
Intersection Capacity Utiliz	zation 84.0%			IC	U Level	of Service	E					
Analysis Period (min) 15												

Splits and Phases: 1344: Lakeshore Blvd & British Colombia Rd Ø9

1344: Lakeshore Blvd & British Colombia Rd

05/20/2021

	•	-	•	†
		_		
Lane Group	EBL	EBT	WBR	NBT
Lane Group Flow (vph)	57	406	597	2448
v/c Ratio	0.16	1.11	0.87	0.89
Control Delay	6.4	131.2	42.0	33.1
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	6.4	131.2	42.0	33.1
Queue Length 50th (m)	0.0	~128.6	48.5	211.5
Queue Length 95th (m)	7.6	#201.0	72.9	252.0
Internal Link Dist (m)		387.9		776.6
Turn Bay Length (m)	15.0		80.0	
Base Capacity (vph)	350	365	793	2773
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio				

HCM Signalized Intersection Capacity Analysis 1344: Lakeshore Blvd & British Colombia Rd

05/20/2021

	۶	→	•	•	←	•	4	†	1	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^				77		ተተኈ				
Traffic Volume (vph)	54	386	0	0	0	567	0	2322	4	0	0	0
Future Volume (vph)	54	386	0	0	0	567	0	2322	4	0	0	0
Ideal Flow (vphpl)	1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	3.0				5.0		6.0				
Lane Util. Factor	1.00	1.00				0.88		0.91				
Frt	1.00	1.00				0.85		1.00				
Flt Protected	0.95	1.00				1.00		1.00				
Satd. Flow (prot)	1652	1939				2756		5028				
Flt Permitted	0.95	1.00				1.00		1.00				
Satd. Flow (perm)	1652	1939				2756		5028				
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	57	406	0	0	0	597	0	2444	4	0	0	0
RTOR Reduction (vph)	47	0	0	0	0	246	0	0	0	0	0	0
Lane Group Flow (vph)	10	406	0	0	0	351	0	2448	0	0	0	0
Turn Type	Perm	NA	•			Perm		NA				
Protected Phases	1 01111	4				1 01111		2				
Permitted Phases	4	-				9		_				
Actuated Green, G (s)	23.0	23.0				21.2		74.7				
Effective Green, q (s)	24.0	26.0				22.2		75.7				
Actuated g/C Ratio	0.17	0.19				0.16		0.55				
Clearance Time (s)	6.0	6.0				6.0		7.0				
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Lane Grp Cap (vph)	287	365				443		2760				
v/s Ratio Prot	201	c0.21				770		c0.49				
v/s Ratio Perm	0.01	CU.Z I				c0.13		60.43				
v/c Ratio	0.01	1.11				0.79		0.89				
Uniform Delay, d1	47.3	56.0				55.6		27.3				
Progression Factor	1.00	1.00				1.00		1.00				
Incremental Delay, d2	0.0	81.0				9.4		3.8				
	47.4	137.0				65.0		31.2				
Delay (s) Level of Service	47.4 D	137.0 F				00.0 E		31.2 C				
Approach Delay (s)	U	125.9			65.0			31.2			0.0	
Approach LOS		125.9 F			00.U E			31.2 C			0.0 A	
		F			E			C			А	
Intersection Summary												
HCM 2000 Control Delay			49.5	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.92									
Actuated Cycle Length (s)			137.9		um of lost				15.0			
Intersection Capacity Utiliza	ation		84.0%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
o Critical Lana Croup												

HCM 2000 Control Delay 49.5 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.92	Intersection Summary				
	HCM 2000 Control Delay	49.5	HCM 2000 Level of Service	D	
	HCM 2000 Volume to Capacity ratio	0.92			
Actuated Cycle Length (s) 137.9 Sum of lost time (s) 15.0	Actuated Cycle Length (s)	137.9	Sum of lost time (s)	15.0	
Intersection Capacity Utilization 84.0% ICU Level of Service E	Intersection Capacity Utilization	84.0%	ICU Level of Service	E	
Analysis Period (min) 15	Analysis Period (min)	15			
c Critical Lane Group	c Critical Lane Group				

Existing PM 05/06/2014 HDR Corporation

Synchro 10 Report Page 26

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

05/20/2021

	۶	→	•	•	—	•	1	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			413-			414	
Traffic Volume (vph)	5	4	2	376	0	151	0	379	159	58	350	0
Future Volume (vph)	5	4	2	376	0	151	0	379	159	58	350	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.97			0.90			0.87			0.98	
Frt		0.979			0.961			0.956				
Flt Protected		0.977			0.966						0.993	
Satd. Flow (prot)	0	1763	0	0	1672	0	0	2784	0	0	3346	0
FIt Permitted		0.856			0.781						0.794	
Satd. Flow (perm)	0	1530	0	0	1252	0	0	2784	0	0	2620	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			41			103				
Link Speed (k/h)		50			40			50			50	
Link Distance (m)		106.6			106.9			249.2			212.5	
Travel Time (s)		7.7			9.6			17.9			15.3	
Confl. Peds. (#/hr)	64		79	79		64	107		178	178		107
Confl. Bikes (#/hr)			18			16			36			
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	0%	0%	0%	1%	0%	2%	0%	2%	2%	0%	1%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	10	24	24	10	24	24
Adj. Flow (vph)	6	5	2	427	0	172	0	431	181	66	398	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	13	0	0	599	0	0	612	0	0	464	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	_		0.0	•		0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.08	1.01	1.01	1.08	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 27

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

	٠	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Minimum Split (s)	24.0	24.0		24.0	24.0		25.0	25.0		25.0	25.0	
Total Split (s)	40.0	40.0		40.0	40.0		40.0	40.0		40.0	40.0	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)	35.0	35.0		35.0	35.0		34.0	34.0		34.0	34.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-2.0			-1.0			-1.0	
Total Lost Time (s)		4.0			3.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	26	26		21	21		100	100		100	100	
Act Effct Green (s)		36.0			37.0			35.0			35.0	
Actuated g/C Ratio		0.45			0.46			0.44			0.44	
v/c Ratio		0.02			1.00			0.48			0.40	
Control Delay		11.5			58.6			15.7			13.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		11.5			58.6			15.7			13.4	
LOS		В			E			В			В	
Approach Delay		11.5			58.6			15.7			13.4	
Approach LOS		В			Е			В			В	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 8												
Offset: 79 (99%), Referen	nced to phase	2:NBTL a	and 6:SB	TL, Start	of Green							
Natural Cycle: 60												
Control Type: Actuated-C												
Maximum v/c Ratio: 1.00						100.0						
Intersection Signal Delay					tersection		_					
Intersection Capacity Util Analysis Period (min) 15	ization 82.5%			IC	CU Level o	of Service	E					
, ,	10. Dufferin C	. 0 D/I :	harti Ct									
4 ♠	19: Dufferin St	ια DWy/LI	Derly St		1.							
Ø2 (R)						04					_	
40 s					40 s							

Ø6 (R) ₩ Ø8

Existing PM 05/06/2014 HDR Corporation

Synchro 10 Report Page 28

05/20/2021

Queues

1449: Dufferin St & Dwy/Liberty St

05/20/2021

	-	←	†	1
				*
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	13	599	612	464
v/c Ratio	0.02	1.00	0.48	0.40
Control Delay	11.5	58.6	15.7	13.4
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	11.5	58.6	15.7	13.4
Queue Length 50th (m)	0.9	82.7	35.7	30.2
Queue Length 95th (m)	3.7	#146.8	m46.0	m34.3
Internal Link Dist (m)	82.6	82.9	225.2	188.5
Turn Bay Length (m)				
Base Capacity (vph)	689	601	1275	1146
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.02	1.00	0.48	0.40

Intersection Summary

HCM Signalized Intersection Capacity Analysis 1449: Dufferin St & Dwy/Liberty St

05	20)/2()2

	۶	→	•	•	←	4	4	†	~	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			413			414	
Traffic Volume (vph)	5	4	2	376	0	151	0	379	159	58	350	0
Future Volume (vph)	5	4	2	376	0	151	0	379	159	58	350	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			3.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.98			0.97			0.87			1.00	
Flpb, ped/bikes		0.99			0.93			1.00			0.98	
Frt		0.98			0.96			0.96			1.00	
Flt Protected		0.98			0.97			1.00			0.99	
Satd. Flow (prot)		1747			1548			2783			3276	
Flt Permitted		0.86			0.78			1.00			0.79	
Satd. Flow (perm)		1530			1251			2783			2618	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	6	5	2	427	0	172	0	431	181	66	398	0
RTOR Reduction (vph)	0	1	0	0	22	0	0	58	0	0	0	0
Lane Group Flow (vph)	0	12	0	0	577	0	0	554	0	0	464	0
Confl. Peds. (#/hr)	64		79	79		64	107		178	178		107
Confl. Bikes (#/hr)			18			16			36			
Heavy Vehicles (%)	0%	0%	0%	1%	0%	2%	0%	2%	2%	0%	1%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	10	24	24	10	24	24
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		35.0			35.0			34.0			34.0	
Effective Green, g (s)		36.0			37.0			35.0			35.0	
Actuated g/C Ratio		0.45			0.46			0.44			0.44	
Clearance Time (s)		5.0			5.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		688			578			1217			1145	
v/s Ratio Prot								c0.20				
v/s Ratio Perm		0.01			c0.46						0.18	
v/c Ratio		0.02			1.00			0.46			0.41	
Uniform Delay, d1		12.2			21.5			15.8			15.4	
Progression Factor		1.00			1.00			1.13			0.80	
Incremental Delay, d2		0.0			36.7			0.6			0.8	
Delay (s)		12.2			58.2			18.5			13.1	
Level of Service		В			Е			В			В	
Approach Delay (s)		12.2			58.2			18.5			13.1	
Approach LOS		В			Е			В			В	
Intersection Summary												
HCM 2000 Control Delay			31.0	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ity ratio		0.74		2.31 2000	_3.0.01	1 1 1 1 0 0					
Actuated Cycle Length (s)	,		80.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilizati	on		82.5%		U Level o				E			
Analysis Period (min)			15									
c Critical Lane Group			.,									

HCM 2000 Control Delay	31.0	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.74			
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	9.0	
Intersection Capacity Utilization	82.5%	ICU Level of Service	E	
Analysis Period (min)	15			
c Critical Lane Group				

Existing PM 05/06/2014 HDR Corporation

Synchro 10 Report Page 30

Stin percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 Volume for 95th percentile queue is metered by upstream signal.

Lanes, Volumes, Timings 1628: Shaw St & King St

05/20/2021

	•	-	\rightarrow	•	-	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			414			414	
Traffic Volume (vph)	15	420	34	0	710	80	84	251	7	57	164	111
Future Volume (vph)	15	420	34	0	710	80	84	251	7	57	164	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.99			0.99			0.99			0.96	
Frt		0.989			0.985			0.997			0.950	
Flt Protected		0.998						0.988			0.992	
Satd. Flow (prot)	0	2784	0	0	2902	0	0	3134	0	0	2745	0
Flt Permitted		0.914						0.732			0.811	
Satd. Flow (perm)	0	2548	0	0	2902	0	0	2297	0	0	2220	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		18			27			3			86	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		199.1			255.2			127.7			380.6	
Travel Time (s)		14.3			18.4			11.5			34.3	
Confl. Peds. (#/hr)	99		83	83		99	73		109	109		73
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles (%)	100%	6%	0%	100%	4%	0%	0%	1%	0%	19%	3%	7%
Bus Blockages (#/hr)	20	20	20	20	20	20	0	0	0	0	0	0
Adj. Flow (vph)	18	494	40	0	835	94	99	295	8	67	193	131
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	552	0	0	929	0	0	402	0	0	391	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	J .		0.0	J .		0.0			0.0	J .
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.22	1.16	1.16	1.22	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	

Existing PM 05/06/2014 Synchro 10 Report HDR Corporation Page 31 Lanes, Volumes, Timings 1628: Shaw St & King St

EBL EBT WBT WBR Lane Group EBR WBL NBL NBT Permitted Phases Detector Phase 2 2 6 4 4 8 8 Switch Phase Minimum Initial (s) 22.0 22.0 22.0 22.0 20.0 20.0 20.0 20.0 Minimum Split (s) 28.0 28.0 28.0 28.0 26.0 26.0 26.0 26.0 Total Split (s) 43.0 43.0 43.0 43.0 27.0 27.0 27.0 27.0 Total Split (%) 61.4% 61.4% 61.4% 61.4% 38.6% 38.6% 38.6% 38.6% Maximum Green (s) 37.0 37.0 37.0 37.0 21.0 21.0 21.0 21.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode C-Max C-Max C-Max C-Max None None None None 7.0 7.0 7.0 7.0 7.0 Walk Time (s) 7.0 7.0 7.0 Flash Dont Walk (s) 15.0 15.0 15.0 15.0 13.0 13.0 13.0 13.0 Pedestrian Calls (#/hr) 28 33 100 24 Act Effct Green (s) 38.8 38.8 21.2 21.2 Actuated g/C Ratio 0.55 0.55 0.30 0.30 v/c Ratio 0.39 0.57 0.58 0.53 Control Delay 9.6 11.7 24.3 18.7 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 9.6 11.7 24.3 18.7 LOS С В Α В Approach Delay 24.3 Approach LOS Α В Intersection Summary CBD Area Type: Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.58 Intersection Signal Delay: 14.6 Intersection LOS: B Intersection Capacity Utilization 72.5% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St **↑**†_{Ø4} Ø2 (R) ₩ Ø6 (R)

05/20/2021

Existing PM 05/06/2014 Synchro 10 Report HDR Corporation Page 32

Queues 1628: Shaw St & King St

05/20/2021

	-	•	Ť	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	552	929	402	391
v/c Ratio	0.39	0.57	0.58	0.53
Control Delay	9.6	11.7	24.3	18.7
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	9.6	11.7	24.3	18.7
Queue Length 50th (m)	18.7	36.5	23.1	17.0
Queue Length 95th (m)	27.3	49.4	33.0	26.4
Internal Link Dist (m)	175.1	231.2	103.7	356.6
Turn Bay Length (m)				
Base Capacity (vph)	1420	1620	723	756
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.39	0.57	0.56	0.52
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 1628: Shaw St & King St

	•	-	•	•	←	•	1	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			414			414	
Traffic Volume (vph)	15	420	34	0	710	80	84	251	7	57	164	111
Future Volume (vph)	15	420	34	0	710	80	84	251	7	57	164	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			1.00			0.97	
Flpb, ped/bikes		1.00			1.00			0.99			0.99	
Frt		0.99			0.98			1.00			0.95	
Flt Protected		1.00			1.00			0.99			0.99	
Satd. Flow (prot)		2784			2901			3100			2713	
Flt Permitted		0.91			1.00			0.73			0.81	
Satd. Flow (perm)		2549			2901			2298			2220	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	18	494	40	0	835	94	99	295	8	67	193	131
RTOR Reduction (vph)	0	8	0	0	12	0	0	2	0	0	60	C
Lane Group Flow (vph)	0	544	0	0	917	0	0	400	0	0	331	C
Confl. Peds. (#/hr)	99		83	83		99	73		109	109		73
Heavy Vehicles (%)	100%	6%	0%	100%	4%	0%	0%	1%	0%	19%	3%	7%
Bus Blockages (#/hr)	20	20	20	20	20	20	0	0	0	0	0	C
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		37.8			37.8			20.2			20.2	
Effective Green, g (s)		38.8			38.8			21.2			21.2	
Actuated g/C Ratio		0.55			0.55			0.30			0.30	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1412			1607			695			672	
v/s Ratio Prot					c0.32							
v/s Ratio Perm		0.21						c0.17			0.15	
v/c Ratio		0.39			0.57			0.58			0.49	
Uniform Delay, d1		8.8			10.2			20.6			20.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.8			1.5			1.2			0.6	
Delay (s)		9.6			11.6			21.8			20.6	
Level of Service		Α			В			С			С	
Approach Delay (s)		9.6			11.6			21.8			20.6	
Approach LOS		Α			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			14.5	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.57									
Actuated Cycle Length (s)			70.0	Sı	um of lost	time (s)			10.0			
Intersection Capacity Utiliza	ation		72.5%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

05/20/2021

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 33

/20	

	ᄼ	-	•	•	—	•	4	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			414			4			4	
Traffic Volume (vph)	0	583	0	0	610	106	0	0	0	89	0	75
Future Volume (vph)	0	583	0	0	610	106	0	0	0	89	0	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor					0.98						0.94	
Frt					0.978						0.938	
Flt Protected											0.974	
Satd. Flow (prot)	0	2730	0	0	2611	0	0	1691	0	0	1273	0
Flt Permitted											0.841	
Satd. Flow (perm)	0	2730	0	0	2611	0	0	1691	0	0	1076	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					44						53	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		318.4			199.1			158.6			196.7	
Travel Time (s)		22.9			14.3			11.4			14.2	
Confl. Peds. (#/hr)	54		106	106		54	67		34	34		67
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	0%	13%	0%	0%	14%	12%	0%	0%	0%	17%	0%	16%
Bus Blockages (#/hr)	20	20	20	20	20	20	0	0	0	0	0	0
Adj. Flow (vph)	0	601	0	0	629	109	0	0	0	92	0	77
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	601	0	0	738	0	0	0	0	0	169	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.22	1.16	1.16	1.22	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		J X			J X			J LX			J X	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA			NA			0.0		Perm	NA	
Protected Phases		2			6			8		1 CHIII	4	
i iotooteu i ilases					U			U			4	

 Existing PM 05/06/2014
 Synchro 10 Report

 HDR Corporation
 Page 35

Lanes, Volumes, Timings 1851: King St & Sudbury St

₩ Ø6 (R)

	•	-	\rightarrow	•	•	•	4	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	24.0	24.0		24.0	24.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	30.0	30.0		30.0	30.0		26.0	26.0		26.0	26.0	
Total Split (s)	53.0	53.0		53.0	53.0		27.0	27.0		27.0	27.0	
Total Split (%)	66.3%	66.3%		66.3%	66.3%		33.8%	33.8%		33.8%	33.8%	
Maximum Green (s)	47.0	47.0		47.0	47.0		22.0	22.0		22.0	22.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	17.0	17.0		17.0	17.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		18	18		22	22		11	11	
Act Effct Green (s)		48.8			48.8						22.2	
Actuated g/C Ratio		0.61			0.61						0.28	
v/c Ratio		0.36			0.46						0.50	
Control Delay		8.6			9.0						22.3	
Queue Delay		0.0			0.0						0.0	
Total Delay		8.6			9.0						22.3	
LOS		Α			Α						С	
Approach Delay		8.6			9.0						22.3	
Approach LOS		Α			Α						С	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 1 (1%), Reference	d to phase 2	EBTL and	I 6:WBTL	., Start of	1st Green	1						
Natural Cycle: 60												
Control Type: Actuated-C	oordinated											
Maximum v/c Ratio: 0.50												
Intersection Signal Delay:					ntersection							
Intersection Capacity Utili	zation 48.1%			10	CU Level of	of Service	Α					
Analysis Period (min) 15												
Splits and Phases: 185	1: King St &	Sudbury S	it									
Ø2 (R)	<u> </u>	,						Ø4				
- WZ (K)								▼ 104				

Existing PM 05/06/2014 Synchro 10 Report HDR Corporation Page 36

↑†ø8

05/20/2021

Queues 1851: King St & Sudbury St

05/20/2021

	-	•	¥
Lane Group	EBT	WBT	SBT
Lane Group Flow (vph)	601	738	169
v/c Ratio	0.36	0.46	0.50
Control Delay	8.6	9.0	22.3
Queue Delay	0.0	0.0	0.0
Total Delay	8.6	9.0	22.3
Queue Length 50th (m)	21.4	26.4	14.3
Queue Length 95th (m)	31.8	39.5	32.3
Internal Link Dist (m)	294.4	175.1	172.7
Turn Bay Length (m)			
Base Capacity (vph)	1665	1610	347
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.36	0.46	0.49
Intersection Summary			

HCM Signalized Intersection Capacity Analysis 1851: King St & Sudbury St

05/20/2021

	۶	-	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			413			4			4	
Traffic Volume (vph)	0	583	0	0	610	106	0	0	0	89	0	75
Future Volume (vph)	0	583	0	0	610	106	0	0	0	89	0	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0						4.0	
Lane Util. Factor		0.95			0.95						1.00	
Frpb, ped/bikes		1.00			0.98						0.96	
Flpb, ped/bikes		1.00			1.00						0.98	
Frt		1.00			0.98						0.94	
Flt Protected		1.00			1.00						0.97	
Satd. Flow (prot)		2730			2610						1246	
Flt Permitted		1.00			1.00						0.84	
Satd. Flow (perm)		2730			2610						1077	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	0	601	0	0	629	109	0	0	0	92	0	77
RTOR Reduction (vph)	0	0	0	0	17	0	0	0	0	0	38	0
Lane Group Flow (vph)	0	601	0	0	721	0	0	0	0	0	131	0
Confl. Peds. (#/hr)	54		106	106		54	67		34	34		67
Heavy Vehicles (%)	0%	13%	0%	0%	14%	12%	0%	0%	0%	17%	0%	16%
Bus Blockages (#/hr)	20	20	20	20	20	20	0	0	0	0	0	0
Turn Type		NA			NA					Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)		47.8			47.8						21.2	
Effective Green, g (s)		48.8			48.8						22.2	
Actuated g/C Ratio		0.61			0.61						0.28	
Clearance Time (s)		6.0			6.0						5.0	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		1665			1592						298	
v/s Ratio Prot		0.22			c0.28							
v/s Ratio Perm											c0.12	
v/c Ratio		0.36			0.45						0.44	
Uniform Delay, d1		7.8			8.4						23.8	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		0.6			0.9						1.0	
Delay (s)		8.4			9.3						24.8	
Level of Service		Α			Α						С	
Approach Delay (s)		8.4			9.3			0.0			24.8	
Approach LOS		Α			Α			Α			С	
Intersection Summary												
HCM 2000 Control Delay			10.7	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capaci	tv ratio		0.45									
Actuated Cycle Length (s)	,		80.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilization	on		48.1%			of Service			A			
Analysis Period (min)			15			2200						
Critical Lana Craun												

Intersection Summary				
HCM 2000 Control Delay	10.7	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.45			
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	9.0	
Intersection Capacity Utilization	48.1%	ICU Level of Service	Α	
Analysis Period (min)	15			
c Critical Lane Group				

	→	•	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 1>		.,	414	ሻ	7
Traffic Volume (vph)	373	276	2	624	206	223
Future Volume (vph)	373	276	2	624	206	223
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.0	3.0
Storage Length (m)	0.0	0.0	0.0	0.0	30.0	0.0
Storage Lanes		0.0	0.0		1	1
Taper Length (m)		J	2.5		2.5	
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Ped Bike Factor	0.81	0.33	0.55	1.00	0.95	0.96
Frt	0.936			1.00	0.33	0.850
Fit Protected	0.930				0.950	0.000
	0004	0	_	0700		4000
Satd. Flow (prot)	2234	0	0	2798	1486	1233
Flt Permitted				0.953	0.950	4400
Satd. Flow (perm)	2234	0	0	2665	1416	1183
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	317					97
Link Speed (k/h)	50			50	30	
Link Distance (m)	191.3			318.4	198.0	
Travel Time (s)	13.8			22.9	23.8	
Confl. Peds. (#/hr)		261	261		45	28
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	6%	3%	100%	10%	2%	10%
Bus Blockages (#/hr)	20	20	20	20	0	0
Adj. Flow (vph)	429	317	2	717	237	256
Shared Lane Traffic (%)	120	017			201	200
Lane Group Flow (vph)	746	0	0	719	237	256
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left		Left	Left	Left	
	Leπ 0.0	Right	Left	0.0	3.0	Right
Median Width(m)						
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	1.6			1.6	1.6	
Two way Left Turn Lane						
Headway Factor	1.22	1.16	1.16	1.22	1.25	1.25
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (m)	30.5		6.1	30.5	6.1	6.1
Trailing Detector (m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Size(m)	1.8		6.1	1.8	6.1	6.1
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OILLX		OITEX	OITEX	OI LX	OI · LX
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)			0.0		0.0	0.0
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	CI+Ex			CI+Ex		

Existing PM 05/06/2014	Synchro 10 Repor
HDR Corporation	Page 39

	-	•	1	•	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Detector 2 Channel							
Detector 2 Extend (s)	0.0			0.0			
Turn Type	NA		Perm	NA	Perm	Perm	
Protected Phases	2			6			
Permitted Phases			6		8	8	
Detector Phase	2		6	6	8	8	
Switch Phase							
Minimum Initial (s)	21.0		21.0	21.0	20.0	20.0	
Minimum Split (s)	28.0		28.0	28.0	26.0	26.0	
Total Split (s)	43.0		43.0	43.0	27.0	27.0	
Total Split (%)	61.4%		61.4%	61.4%	38.6%	38.6%	
Maximum Green (s)	36.0		36.0	36.0	21.0	21.0	
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0	
All-Red Time (s)	3.0		3.0	3.0	2.0	2.0	
Lost Time Adjust (s)	-1.0			-1.0	-1.0	-1.0	
Total Lost Time (s)	6.0			6.0	5.0	5.0	
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Recall Mode	C-Max		C-Max	C-Max	None	None	
Walk Time (s)	7.0		7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	14.0		14.0	14.0	13.0	13.0	
Pedestrian Calls (#/hr)	100		0	0	15	15	
Act Effct Green (s)	37.8			37.8	21.2	21.2	
Actuated g/C Ratio	0.54			0.54	0.30	0.30	
v/c Ratio	0.55			0.50	0.55	0.60	
Control Delay	7.5			11.7	26.2	19.5	
Queue Delay	0.0			0.0	0.0	0.0	
Total Delay	7.5			11.7	26.2	19.5	
LOS	Α			В	С	В	
Approach Delay	7.5			11.7	22.7		
Approach LOS	Α			В	С		
Intersection Summary							
	CBD						
Area Type:	CDD						
Cycle Length: 70	0						
Actuated Cycle Length: 70 Offset: 6 (9%), Reference		RT and 6	S-M/RTI	Start of 1	et Groon		
Offset: 6 (9%), Reference Natural Cycle: 55	u to phase 2:E	י מוומ ום	J.VVD I L,	SIGIT OF I	st Green		
Natural Cycle: 55 Control Type: Actuated-C	oordinated						
Control Type: Actuated-C Maximum v/c Ratio: 0.60	oordinated						
	120			1	tersection	100.0	
Intersection Signal Delay: Intersection Capacity Utili					itersection CU Level o		٨
	ZaliUII 31.9%			IC	O Level (oetvice	Α
Analysis Period (min) 15	2. Atlantia A	0 Kina (24				
Analysis Period (min) 15	2: Atlantic Ave	& King S	St				
Analysis Period (min) 15 Splits and Phases: 191	2: Atlantic Ave	& King S	St				
Analysis Period (min) 15	2: Atlantic Ave	& King S	St				
Analysis Period (min) 15 Splits and Phases: 191 9 92 (R) 43 s	2: Atlantic Ave	& King S	St				4.
Analysis Period (min) 15 Splits and Phases: 191	2: Atlantic Ave	& King S	St				₹ /Ø8

Queues 1912: Atlantic Ave & King St

05/20/2021

	-	•		
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	746	719	237	256
v/c Ratio	0.55	0.50	0.55	0.60
Control Delay	7.5	11.7	26.2	19.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	7.5	11.7	26.2	19.5
Queue Length 50th (m)	15.4	28.4	25.9	16.9
Queue Length 95th (m)	27.8	40.8	43.7	36.4
Internal Link Dist (m)	167.3	294.4	174.0	
Turn Bay Length (m)			30.0	
Base Capacity (vph)	1352	1438	445	438
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.55	0.50	0.53	0.58
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 1912: Atlantic Ave & King St

05/20/2021

	-	\rightarrow	•	•	4	<i>></i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† 1>			414	*	#		
raffic Volume (vph)	373	276	2	624	206	223		
Future Volume (vph)	373	276	2	624	206	223		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	3.5	3.5	3.5	3.5	3.0	3.0		
Total Lost time (s)	6.0			6.0	5.0	5.0		
Lane Util. Factor	0.95			0.95	1.00	1.00		
Frpb, ped/bikes	0.81			1.00	1.00	0.96		
Flpb, ped/bikes	1.00			1.00	0.95	1.00		
Frt	0.94			1.00	1.00	0.85		
Flt Protected	1.00			1.00	0.95	1.00		
Satd. Flow (prot)	2235			2796	1416	1183		
Flt Permitted	1.00			0.95	0.95	1.00		
Satd. Flow (perm)	2235			2666	1416	1183		
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87		
Adj. Flow (vph)	429	317	2	717	237	256		
RTOR Reduction (vph)	146	0	0	0	0	68		
Lane Group Flow (vph)	600	0	0	719	237	188		
Confl. Peds. (#/hr)		261	261		45	28		
Heavy Vehicles (%)	6%	3%	100%	10%	2%	10%		
Bus Blockages (#/hr)	20	20	20	20	0	0		
Turn Type	NA		Perm	NA	Perm	Perm		
Protected Phases	2			6				
Permitted Phases			6		8	8		
Actuated Green, G (s)	36.8			36.8	20.2	20.2		
Effective Green, g (s)	37.8			37.8	21.2	21.2		
Actuated g/C Ratio	0.54			0.54	0.30	0.30		
Clearance Time (s)	7.0			7.0	6.0	6.0		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	1206			1439	428	358		
v/s Ratio Prot	0.27							
v/s Ratio Perm				c0.27	c0.17	0.16		
v/c Ratio	0.50			0.50	0.55	0.53		
Uniform Delay, d1	10.1			10.1	20.4	20.2		
Progression Factor	1.00			1.00	1.00	1.00		
Incremental Delay, d2	1.5			1.2	1.6	1.4		
Delay (s)	11.6			11.4	22.0	21.6		
Level of Service	В			В	С	С		
Approach Delay (s)	11.6			11.4	21.8			
Approach LOS	В			В	С			
ntersection Summary								
HCM 2000 Control Delay			14.1	Н	CM 2000	Level of Servic	е	В
HCM 2000 Volume to Cap	acity ratio		0.53					
Actuated Cycle Length (s)			70.0	Sı	um of lost	time (s)		12.0
Intersection Capacity Utiliz	ation		51.9%		U Level o			Α
Analysis Period (min)			15					
c Critical Lane Group								

Existing PM 05/06/2014 HDR Corporation

Lane Group

Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Ideal Flow (vphpl)

Lane Util. Factor

Satd. Flow (prot)

Satd. Flow (perm)

Right Turn on Red

Satd. Flow (RTOR)

Link Speed (k/h)

Link Distance (m)

Peak Hour Factor Heavy Vehicles (%)

Bus Blockages (#/hr)

Shared Lane Traffic (%)

Lane Group Flow (vph)

Enter Blocked Intersection

Travel Time (s)

Adj. Flow (vph)

Lane Alignment

Link Offset(m)

Median Width(m)

Crosswalk Width(m)

Headway Factor Turning Speed (k/h)

Number of Detectors Detector Template

Leading Detector (m)

Trailing Detector (m)

Detector 1 Position(m

Detector 1 Size(m)

Detector 1 Channel Detector 1 Extend (s)

Detector 1 Queue (s)

Detector 1 Delay (s)

Detector 2 Size(m)

Detector 2 Channel

Protected Phases

Permitted Phases Detector Phase

Detector 2 Extend (s)

Detector 2 Type

Turn Type

Detector 2 Position(m)

Detector 1 Type

Two way Left Turn Lane

Flt Protected

Flt Permitted

Frt

EBL

0 539

0.95

0%

20 20

0

0 606

No

Left

1.16

24

Left

6.1

0.0

0.0

6.1

0.0

0.0

2

1900 1900

EBT

0.95

0 2966 2915

50

316.7

22.8

0.89

4%

606

No

0.0

1.6 1.6

1.22

Thru

30.5

0.0

0.0

1.8

0.0

0.0

0.0

28.7

1.8

0.0

NA

2

2

CI+Ex CI+Ex

CI+Ex CI+Ex CI+Ex

Left

0 2966

ħβ

728

728

1900

0.95

0.977

2915

51

50

13.8

0.89

4%

20

818

965

No

Left Right

0.0

0.0

Thru

30.5

0.0

0.0

1.8

0.0

0.0

0.0

28.7

1.8

0.0

NA

6

6

→ ← < √ √

131

1900

0.95 1.00

Yes

0%

20

147

0

No

14 24

SBL

93

1900

0.973

0.962

1468

0.962

1468

50

100.8

7.3

0.89

0% 39%

104

130

No

Left Right

3.5

0.0

1.6

Left

6.1

0.0

0.0

6.1

0.0

0.0

0.0

Perm

8

CI+Ex

23

23

1900

1.00

Yes

0.89

26

0

No

14

	•	-	←	•	-	4		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		
Switch Phase								
Minimum Initial (s)	20.0	20.0	20.0		18.0			
Minimum Split (s)	26.0	26.0	26.0		23.0			
Total Split (s)	56.0	56.0	56.0		24.0			
Total Split (%)	70.0%	70.0%	70.0%		30.0%			
Maximum Green (s)	50.0	50.0	50.0		19.0			
Yellow Time (s)	4.0	4.0	4.0		3.0			
All-Red Time (s)	2.0	2.0	2.0		2.0			
Lost Time Adjust (s)		-1.0	-1.0		-1.0			
Total Lost Time (s)		5.0	5.0		4.0			
Lead/Lag								
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0	3.0	3.0		3.0			
Recall Mode	C-Max	C-Max	None		None			
Walk Time (s)	7.0	7.0	7.0		7.0			
Flash Dont Walk (s)	13.0	13.0	13.0		11.0			
Pedestrian Calls (#/hr)	0	0	0		0			
Act Effct Green (s)		57.6	57.6		19.0			
Actuated g/C Ratio		0.72	0.72		0.24			
v/c Ratio		0.28	0.46		0.36			
Control Delay		4.5	6.9		25.8			
Queue Delay		0.0	0.0		0.0			
Total Delay		4.5	6.9		25.8			
LOS		Α	Α		С			
Approach Delay		4.5	6.9		25.8			
Approach LOS		Α	Α		С			
Intersection Summary								
Area Type:	CBD							
Cycle Length: 80								
Actuated Cycle Length: 80								
Offset: 1 (1%), Referenced	to phase 2	EBTL, St	art of Gre	en				
Natural Cycle: 50								
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.46								
Intersection Signal Delay:					ntersection			
Intersection Capacity Utiliz	ation 49.5%			IC	CU Level o	of Service A		
Analysis Period (min) 15								
Splits and Phases: 2081	I: King St &	loo Chuci	tor Mov					
Spiils and Friases. 2001	i. Killy St &	JUE SHUS	lei vvay				1	
- → Ø2 (R)								
56 s								
←								
Ø6						_	™Ø8	
56 s							24 s	

Existing PM 05/06/2014 Synchro 10 Report HDR Corporation Page 43

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 44 2081: King St & Joe Shuster Way

05/20/2021

	-	←	-
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	606	965	130
v/c Ratio	0.28	0.46	0.36
Control Delay	4.5	6.9	25.8
Queue Delay	0.0	0.0	0.0
Total Delay	4.5	6.9	25.8
Queue Length 50th (m)	15.4	33.0	14.5
Queue Length 95th (m)	m16.6	44.7	29.1
Internal Link Dist (m)	292.7	167.3	76.8
Turn Bay Length (m)			
Base Capacity (vph)	2135	2113	378
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.28	0.46	0.34

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 2081: King St & Joe Shuster Way

05/20/2021

	•	→	—	•	-	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		414	∱ ⊅		W			
Traffic Volume (vph)	0	539	728	131	93	23		
Future Volume (vph)	0	539	728	131	93	23		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		5.0	5.0		4.0			
Lane Util. Factor		0.95	0.95		1.00			
Frt		1.00	0.98		0.97			
Flt Protected		1.00	1.00		0.96			
Satd. Flow (prot)		2966	2915		1468			
Flt Permitted		1.00	1.00		0.96			
Satd. Flow (perm)		2966	2915		1468			
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89		
Adj. Flow (vph)	0	606	818	147	104	26		
RTOR Reduction (vph)	0	0	16	0	12	0		
Lane Group Flow (vph)	0	606	949	0	118	0		
Heavy Vehicles (%)	0%	4%	4%	0%	0%	39%		
Bus Blockages (#/hr)	20	20	20	20	0	0		
Turn Type		NA	NA		Perm			
Protected Phases		2	6					
Permitted Phases	2				8			
Actuated Green, G (s)		54.6	54.6		14.4			
Effective Green, g (s)		55.6	55.6		15.4			
Actuated g/C Ratio		0.70	0.70		0.19			
Clearance Time (s)		6.0	6.0		5.0			
Vehicle Extension (s)		3.0	3.0		3.0			
Lane Grp Cap (vph)		2061	2025		282			
v/s Ratio Prot		0.20	c0.33					
v/s Ratio Perm					c0.08			
v/c Ratio		0.29	0.47		0.42			
Uniform Delay, d1		4.7	5.5		28.4			
Progression Factor		0.77	1.00		1.00			
Incremental Delay, d2		0.3	0.2		1.0			
Delay (s)		3.9	5.7		29.4			
Level of Service		Α	Α		С			
Approach Delay (s)		3.9	5.7		29.4			
Approach LOS		Α	Α		С			
Intersection Summary								
HCM 2000 Control Delay			6.9	Н	CM 2000	Level of Service	9	Α
HCM 2000 Volume to Capac	city ratio		0.46					
Actuated Cycle Length (s)			80.0	Sı	um of lost	time (s)	10	0.0
Intersection Capacity Utiliza	tion		49.5%	IC	U Level o	of Service		Α
Analysis Period (min)			15					
0 111 0								

c Critical Lane Group

Synchro 10 Report

Page 45

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

05/20/2021

	•	•	†	<i>></i>	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	†	7	*	†
Traffic Volume (vph)	52	110	483	20	83	661
Future Volume (vph)	52	110	483	20	83	661
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.0	3.5	3.0	3.0	3.5
Storage Length (m)	30.0	0.0	0.0	15.0	30.0	0.0
Storage Lanes	1	1		1	1	
Taper Length (m)	2.5				2.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	0.94	0.99	1.00
Frt		0.850		0.850	0.00	
Flt Protected	0.950	0.000		0.000	0.950	
Satd. Flow (prot)	1685	1315	1842	1507	1478	1842
Flt Permitted	0.950	1010	1042	1307	0.345	1042
	1685	1315	1842	1416	529	1842
Satd. Flow (perm)	1005	Yes	1842	1416 Yes	529	1842
Right Turn on Red						
Satd. Flow (RTOR)	20	124	20	9		20
Link Speed (k/h)	30		30			30
Link Distance (m)	148.7		265.9			191.3
Travel Time (s)	17.8		31.9	0.5	-	23.0
Confl. Peds. (#/hr)				28	28	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	0%	11%	2%	0%	14%	2%
Bus Blockages (#/hr)	0	8	0	0	0	0
Adj. Flow (vph)	58	124	543	22	93	743
Shared Lane Traffic (%)						
Lane Group Flow (vph)	58	124	543	22	93	743
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.0		3.0			3.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	1.6		1.6			1.6
Two way Left Turn Lane						
Headway Factor	1.09	1.14	1.01	1.09	1.09	1.01
Turning Speed (k/h)	24	14		14	24	
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (m)	6.1	6.1	30.5	6.1	6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	6.1	1.8	6.1	6.1	1.8
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
	CITEX	CITEX	CITEX	CITEX	CITEX	CITEX
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)						
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)			28.7			28.7
Detector 2 Size(m)			1.8			1.8
Detector 2 Type			CI+Ex			CI+Ex

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 47

HDR Corporation

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

05/20/2021

Page 48

	•	•	†	<i>></i>	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Detector 2 Channel						
Detector 2 Extend (s)			0.0			0.0
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA
Protected Phases		1	2		1	6
Permitted Phases	8	8		2	6	
Detector Phase	8	1	2	2	1	6
Switch Phase						
Minimum Initial (s)	21.0	6.0	27.0	27.0	6.0	27.0
Minimum Split (s)	26.0	10.0	34.0	34.0	10.0	34.0
Total Split (s)	29.0	11.0	40.0	40.0	11.0	51.0
Total Split (%)	36.3%	13.8%	50.0%	50.0%	13.8%	63.8%
Maximum Green (s)	24.0	7.0	33.0	33.0	7.0	44.0
Yellow Time (s)	3.0	3.0	4.0	4.0	3.0	4.0
All-Red Time (s)	2.0	1.0	3.0	3.0	1.0	3.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)	4.0	3.0	6.0	6.0	3.0	6.0
Lead/Lag		Lead	Lag	Lag	Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	C-Max	C-Max	None	C-Max
Walk Time (s)	7.0		7.0	7.0		0.0
Flash Dont Walk (s)	14.0		20.0	20.0		0.0
Pedestrian Calls (#/hr)	0		9	9		0
Act Effct Green (s)	22.0	24.0	47.0	47.0	61.4	60.8
Actuated g/C Ratio	0.28	0.30	0.59	0.59	0.77	0.76
v/c Ratio	0.13	0.26	0.50	0.03	0.18	0.53
Control Delay	22.8	4.1	15.8	9.7	1.3	8.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.8	4.1	15.8	9.7	1.3	8.0
LOS	С	Α	В	Α	Α	Α
Approach Delay	10.0		15.5			7.2
Approach LOS	В		В			Α
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 31 (39%), Reference	ed to phase	2:NBT a	nd 6:SBT	L, Start of	1st Gree	n
Natural Cycle: 70						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.53						
Intersection Signal Delay:					tersectio	
Intersection Capacity Utiliz	ation 60.6%			IC	CU Level	of Service I
Analysis Period (min) 15						
Splits and Phases: 2134	: British Col	ombio Do	I/Dufforin	Ct 9 Cool	ratahawa	n Dd
Spiils and Friases. 2134	. DIILISII CUI	UIIIDIA NO	/Dullellii	ol & oasi	Adultewa	i Nu
ø ₁ Tø	2 (R)					
11 s 40 s	- (-)					
A						
♥ Ø6 (R)						
1.0						

2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

05/20/2021

	<	•	†	1	-	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	58	124	543	22	93	743
v/c Ratio	0.13	0.26	0.50	0.03	0.18	0.53
Control Delay	22.8	4.1	15.8	9.7	1.3	8.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.8	4.1	15.8	9.7	1.3	8.0
Queue Length 50th (m)	6.6	0.0	60.8	1.0	0.5	77.5
Queue Length 95th (m)	14.9	8.3	96.7	4.9	m0.5	m73.7
Internal Link Dist (m)	124.7		241.9			167.3
Turn Bay Length (m)	30.0			15.0	30.0	
Base Capacity (vph)	526	487	1082	835	510	1400
Starvation Cap Reductn	0	0	0	0	0	12
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.11	0.25	0.50	0.03	0.18	0.54

m Volume for 95th percentile queue is metered by upstream signal.

Existing PM 05/06/2014 HDR Corporation Synchro 10 Report Page 49

HCM Signalized Intersection Capacity Analysis 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

05/20/2021

	•	•	†	/	\	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*	7		7	*	†	
Traffic Volume (vph)	52	110	483	20	83	661	
Future Volume (vph)	52	110	483	20	83	661	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	3.0	3.0	3.5	3.0	3.0	3.5	
Total Lost time (s)	4.0	3.0	6.0	6.0	3.0	6.0	
Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	1.00	0.94	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.85	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1685	1315	1842	1416	1471	1842	
Flt Permitted	0.95	1.00	1.00	1.00	0.34	1.00	
Satd. Flow (perm)	1685	1315	1842	1416	534	1842	
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	
Adj. Flow (vph)	58	124	543	22	93	743	
RTOR Reduction (vph)	0	90	0	4	0	0	
Lane Group Flow (vph)	58	34	543	18	93	743	
Confl. Peds. (#/hr)				28	28		
Heavy Vehicles (%)	0%	11%	2%	0%	14%	2%	
Bus Blockages (#/hr)	0	8	0	0	0	0	
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA	
Protected Phases		1	2		1	6	
Permitted Phases	8	8		2	6		
Actuated Green, G (s)	12.6	20.0	44.0	44.0	55.4	55.4	
Effective Green, g (s)	13.6	22.0	45.0	45.0	56.4	56.4	
Actuated g/C Ratio	0.17	0.28	0.56	0.56	0.70	0.70	
Clearance Time (s)	5.0	4.0	7.0	7.0	4.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	286	361	1036	796	474	1298	
v/s Ratio Prot		0.01	0.29		0.02	c0.40	
v/s Ratio Perm	c0.03	0.02		0.01	0.12		
v/c Ratio	0.20	0.09	0.52	0.02	0.20	0.57	
Uniform Delay, d1	28.5	21.6	10.9	7.8	4.8	5.8	
Progression Factor	1.00	1.00	1.00	1.00	0.24	0.94	
Incremental Delay, d2	0.4	0.1	1.9	0.1	0.0	0.2	
Delay (s)	28.9	21.7	12.8	7.8	1.2	5.6	
Level of Service	С	С	В	Α	Α	A	
Approach Delay (s)	24.0		12.6			5.1	
Approach LOS	С		В			Α	
ntersection Summary							
HCM 2000 Control Delay			10.0	Н	CM 2000	Level of Service	ce A
HCM 2000 Volume to Capacity	y ratio		0.53				
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)	14.0
Intersection Capacity Utilizatio	n		60.6%		CU Level o	()	В
Analysis Period (min)			15				
c Critical Lane Group							

Lanes, Volumes, Timings

97: Yukon Place & British Colombia Rd

09/30/2021

	۶	-	\rightarrow	•	←	•	4	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	£		ሻ	†	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Storage Length (m)	30.0		0.0	20.0		20.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		1	0		0	0		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor				1.00				0.99			0.97	
Frt						0.850					0.865	
Flt Protected	0.950			0.950				0.957				
Satd. Flow (prot)	1685	1824	0	1685	1756	1507	0	1798	0	0	1574	0
Flt Permitted	0.555			0.494								
Satd. Flow (perm)	984	1824	0	874	1756	1507	0	1860	0	0	1574	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						45					514	
Link Speed (k/h)		30			30			30			30	
Link Distance (m)		164.9			265.9			92.0			121.3	
Travel Time (s)		19.8			31.9			11.0			14.6	
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	29	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0	Ť		0.0	Ť		0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.09	1.01	1.09	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5	6.1	6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8	6.1	6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 1 Lanes, Volumes, Timings

97: Yukon Place & British Color	nbia	Rd
---------------------------------	------	----

•	1	†	~	/	ţ	✓

09/30/2021

			•						•		-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	33.0	33.0		33.0	33.0	33.0	7.0	7.0		7.0	7.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	24.0	24.0		24.0	24.0	
Total Split (s)	47.0	47.0		47.0	47.0	47.0	25.0	25.0		25.0	25.0	
Total Split (%)	65.3%	65.3%		65.3%	65.3%	65.3%	34.7%	34.7%		34.7%	34.7%	
Maximum Green (s)	41.0	41.0		41.0	41.0	41.0	19.0	19.0		19.0	19.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0	-1.0		-1.0			-1.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0		9.0	9.0	9.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0		0	0	
Act Effct Green (s)	58.5	58.5		58.5	58.5	58.5		8.0			8.0	
Actuated g/C Ratio	0.90	0.90		0.90	0.90	0.90		0.12			0.12	
v/c Ratio	0.00	0.29		0.00	0.22	0.00		0.04			0.05	
Control Delay	2.0	2.3		2.0	2.1	0.0		27.0			0.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay	2.0	2.3		2.0	2.1	0.0		27.0			0.1	
LOS	Α	Α		Α	Α	Α		С			Α	
Approach Delay		2.3			2.1			27.0			0.1	
Approach LOS		Α			Α			С			Α	
Intersection Summary												

Intersection Summary	1							
Area Type:	Other							
Cycle Length: 72								
Actuated Cycle Lengtl	h: 65.2							
Natural Cycle: 65								
Control Type: Semi A	Control Type: Semi Act-Uncoord							
Maximum v/c Ratio: 0	.29							
Intersection Signal De	elay: 2.4	Intersection LOS: A						
Intersection Capacity Utilization 73.3% ICU Level of Service D								
Analysis Period (min)	15							

Splits and Phases: 97: Yukon Place & British Colombia Rd

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 2

Synchro 11 Report

Page 3

HCM Signalized Intersection Capacity Analysis 97: Yukon Place & British Colombia Rd

09/30/2021

	۶	→	•	•	←	•	1	†	1	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		ሻ	*	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00			0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		0.99			1.00	
Frt	1.00	1.00		1.00	1.00	0.85		1.00			0.86	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.96			1.00	
Satd. Flow (prot)	1685	1824		1681	1756	1507		1781			1574	
Flt Permitted	0.56	1.00		0.49	1.00	1.00		1.00			1.00	
Satd. Flow (perm)	985	1824		873	1756	1507		1860			1574	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	27	0
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	2	0
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	54.3	54.3		54.3	54.3	54.3		2.6			2.6	
Effective Green, g (s)	55.3	55.3		55.3	55.3	55.3		3.6			3.6	
Actuated g/C Ratio	0.80	0.80		0.80	0.80	0.80		0.05			0.05	
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	790	1463		700	1409	1209		97			82	
v/s Ratio Prot		c0.26			0.19						0.00	
v/s Ratio Perm	0.00			0.00		0.00		c0.00				
v/c Ratio	0.00	0.32		0.00	0.24	0.00		0.09			0.02	
Uniform Delay, d1	1.3	1.8		1.3	1.7	1.3		31.1			31.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	0.0	0.6		0.0	0.4	0.0		0.4			0.1	
Delay (s)	1.3	2.4		1.3	2.1	1.3		31.5			31.1	
Level of Service	Α	Α		Α	Α	Α		С			С	
Approach Delay (s)		2.4			2.1			31.5			31.1	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			3.5	Н	CM 2000	Level of S	Service		A			
HCM 2000 Volume to Capac	ity ratio		0.31		J.71 2000	23101010	3014100		- 11			
Actuated Cycle Length (s)	,		68.9	Si	um of lost	time (s)			10.0			
Intersection Capacity Utilizat	ion		73.3%			of Service			D			
Analysis Period (min)			15	10								
c Critical Lane Group			.,									

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements

Lanes, Volumes, Timings 222: Strachan Ave & Lakeshore Blvd

09/30/2021

	ၨ	-	•	•	←	•	4	†	<i>></i>	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	ተተተ			4		ሻ	ની	7
Traffic Volume (vph)	502	3996	5	8	1196	0	0	39	0	287	17	235
Future Volume (vph)	502	3996	5	8	1196	0	0	39	0	287	17	235
Ideal Flow (vphpl)	2150	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Storage Length (m)	60.0		0.0	60.0		50.0	0.0		0.0	140.0		50.0
Storage Lanes	1		0	1		0	0		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor		1.00										0.93
Frt												0.850
Flt Protected	0.950			0.950						0.950	0.957	
Satd. Flow (prot)	1643	5990	0	1685	4885	0	0	1879	0	1585	1693	1507
Flt Permitted	0.087			0.098						0.729	0.718	
Satd. Flow (perm)	151	5990	0	174	4885	0	0	1879	0	1216	1270	1396
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)												261
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		310.3			196.6			116.5			205.6	
Travel Time (s)		18.6			11.8			10.5			18.5	
Confl. Peds. (#/hr)	6		8	8		6	49					49
Confl. Bikes (#/hr)									39			13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	16%	4%	0%	0%	5%	33%	0%	0%	0%	1%	0%	0%
Adj. Flow (vph)	558	4440	6	9	1329	0	0	43	0	319	19	261
Shared Lane Traffic (%)										49%		
Lane Group Flow (vph)	558	4446	0	9	1329	0	0	43	0	163	175	261
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	0.93	0.89	1.01	1.09	1.01	1.09	1.01	1.01	1.01	1.09	1.01	1.09
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 5

Lanes, Volumes, Timings 222: Strachan Ave & Lakeshore Blvd

09/30/2021

	•	-	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA			NA		Perm	NA	pm+ov
Protected Phases	5	2			6			3			4	5
Permitted Phases	2			6			3			4		4
Detector Phase	5	2		6	6		3	3		4	4	5
Switch Phase												
Minimum Initial (s)	6.0	29.0		30.0	30.0		12.0	12.0		10.0	10.0	6.0
Minimum Split (s)	12.0	35.0		36.0	36.0		21.0	21.0		45.0	45.0	12.0
Total Split (s)	31.0	76.0		45.0	45.0		22.0	22.0		46.0	46.0	31.0
Total Split (%)	21.5%	52.8%		31.3%	31.3%		15.3%	15.3%		31.9%	31.9%	21.5%
Maximum Green (s)	25.0	70.0		39.0	39.0		13.0	13.0		38.0	38.0	25.0
Yellow Time (s)	3.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		2.0	2.0		6.0	6.0		5.0	5.0	3.0
Lost Time Adjust (s)	-3.0	-3.0		-1.0	-1.0			-1.0		-1.0	-1.0	-1.0
Total Lost Time (s)	3.0	3.0		5.0	5.0			8.0		7.0	7.0	5.0
Lead/Lag	Lead			Lag	Lag		Lead	Lead		Lag	Lag	Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Max		Max	Max		None	None		None	None	None
Walk Time (s)		7.0		7.0	7.0					7.0	7.0	
Flash Dont Walk (s)		22.0		22.0	22.0					30.0	30.0	
Pedestrian Calls (#/hr)		3		2	2					0	0	
Act Effct Green (s)	74.2	74.2		40.7	40.7			13.2		23.3	23.3	51.8
Actuated g/C Ratio	0.60	0.60		0.33	0.33			0.11		0.19	0.19	0.42
v/c Ratio	1.29	1.24		0.16	0.83			0.21		0.71	0.73	0.34
Control Delay	178.6	134.8		44.1	45.5			58.5		65.2	66.1	3.6
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	0.0
Total Delay	178.6	134.8		44.1	45.5			58.5		65.2	66.1	3.6
LOS	F	F		D	D			E		E	E	Α
Approach Delay		139.7			45.5			58.5			38.6	
Approach LOS		F			D			Е			D	
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 1	23.6											
Natural Cycle: 145												
Control Type: Semi Act-U	Incoord											
Maximum v/c Ratio: 1.29												
Intersection Signal Delay		.,			tersection							
Intersection Capacity Utili	ization 136.0°	/ o		10	CU Level of	of Service	Н					
Analysis Period (min) 15												
* User Entered Value												
Splits and Phases: 222	2: Strachan A	a & Lako	shore Plu	d								
Dpino anu i nascs. ZZZ	Guadian A	vo a Lake	31101 C DIV	u								

	•	-	1	•	†	-	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	558	4446	9	1329	43	163	175	261	
v/c Ratio	1.29	1.24	0.16	0.83	0.21	0.71	0.73	0.34	
Control Delay	178.6	134.8	44.1	45.5	58.5	65.2	66.1	3.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	178.6	134.8	44.1	45.5	58.5	65.2	66.1	3.6	
Queue Length 50th (m)	~170.2	~475.5	1.6	115.2	10.1	41.0	44.2	0.0	
Queue Length 95th (m)	#267.9	#557.7	7.4	#160.6	23.4	66.1	70.2	13.9	
Internal Link Dist (m)		286.3		172.6	92.5		181.6		
Turn Bay Length (m)	60.0		60.0			140.0		50.0	
Base Capacity (vph)	433	3595	57	1606	216	390	407	759	
Starvation Cap Reductn	0	67	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.29	1.26	0.16	0.83	0.20	0.42	0.43	0.34	

HCM Signalized Intersection Capacity Analysis
222: Strachan Ave & Lakeshore Blvd

	•	-	\rightarrow	•	•	•	1	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	N.	ተተ _ጮ		7	ተተተ			4		Ţ	ર્ન	7
Traffic Volume (vph)	502	3996	5	8	1196	0	0	39	0	287	17	235
Future Volume (vph)	502	3996	5	8	1196	0	0	39	0	287	17	235
Ideal Flow (vphpl)	2150	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Total Lost time (s)	3.0	3.0		5.0	5.0			8.0		7.0	7.0	5.0
Lane Util. Factor	1.00	*1.00		1.00	0.91			1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00			1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	0.96	1.00
Satd. Flow (prot)	1643	5989		1685	4885			1879		1585	1694	1460
Flt Permitted	0.09	1.00		0.10	1.00			1.00		0.73	0.72	1.00
Satd. Flow (perm)	151	5989		174	4885			1879		1216	1271	1460
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	558	4440	6	9	1329	0	0	43	0	319	19	261
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	158
Lane Group Flow (vph)	558	4446	0	9	1329	0	0	43	0	163	175	103
Confl. Peds. (#/hr)	6		8	8		6	49					49
Confl. Bikes (#/hr)									39			13
Heavy Vehicles (%)	16%	4%	0%	0%	5%	33%	0%	0%	0%	1%	0%	0%
Turn Type	pm+pt	NA		Perm	NA			NA		Perm	NA	pm+ov
Protected Phases	5	2			6			3			4	5
Permitted Phases	2			6			3			4		4
Actuated Green, G (s)	71.2	71.2		39.8	39.8			9.1		22.3	22.3	47.7
Effective Green, g (s)	74.2	74.2		40.8	40.8			10.1		23.3	23.3	49.7
Actuated g/C Ratio	0.59	0.59		0.32	0.32			0.08		0.19	0.19	0.40
Clearance Time (s)	6.0	6.0		6.0	6.0			9.0		8.0	8.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	426	3538		56	1586			151		225	235	577
v/s Ratio Prot	c0.30	0.74			0.27			c0.02				0.04
v/s Ratio Perm	c0.48			0.05						0.13	c0.14	0.03
v/c Ratio	1.31	1.26		0.16	0.84			0.28		0.72	0.74	0.18
Uniform Delay, d1	39.0	25.7		30.2	39.3			54.4		48.1	48.3	24.7
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00
Incremental Delay, d2	155.5	117.9		6.1	5.5			1.0		11.0	12.1	0.1
Delay (s)	194.5	143.6		36.3	44.8			55.4		59.1	60.4	24.8
Level of Service	F	F		D	D			Е		Е	Е	С
Approach Delay (s)		149.3			44.7			55.4			44.5	
Approach LOS		F			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			119.7	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		1.16									
Actuated Cycle Length (s)	,		125.6	Si	um of lost	time (s)			25.0			
Intersection Capacity Utilization			136.0%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 538: Strachan Ave & King St

09/30/2021

	۶	-	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		, N	f)		7	ĵ.	
Traffic Volume (vph)	0	627	122	66	560	40	113	335	116	27	199	20
Future Volume (vph)	0	627	122	66	560	40	113	335	116	27	199	20
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	25.0		0.0	25.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.91			0.98		0.85	0.96		0.96	0.98	
Frt		0.976			0.991			0.961			0.986	
Flt Protected					0.995		0.950			0.950		
Satd. Flow (prot)	0	1599	0	0	1696	0	1458	1486	0	1516	1601	0
Flt Permitted					0.776		0.505			0.160		
Satd. Flow (perm)	0	1599	0	0	1306	0	660	1486	0	246	1601	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		46			13			23			7	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		255.2			358.6			424.1			379.9	
Travel Time (s)		18.4			25.8			38.2			34.2	
Confl. Peds. (#/hr)	48		285	285		48	205		116	116	•	205
Confl. Bikes (#/hr)			37			15			9			11
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	0%	9%	28%	100%	7%	5%	4%	6%	3%	0%	2%	0%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	0	729	142	77	651	47	131	390	135	31	231	23
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	871	0	0	775	0	131	525	0	31	254	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.92	2.03	1.92	1.92	2.03	1.92	1.25	1.16	1.16	1.25	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 9 Lanes, Volumes, Timings 538: Strachan Ave & King St

▼ Ø6 (R)

09/30/2021

	۶	-	•	•	←	•	4	†	/	-	ţ	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SI
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	20.0	20.0		20.0	20.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		27.0	27.0		27.0	27.0	
Total Split (s)	50.0	50.0		50.0	50.0		30.0	30.0		30.0	30.0	
Total Split (%)	62.5%	62.5%		62.5%	62.5%		37.5%	37.5%		37.5%	37.5%	
Maximum Green (s)	44.0	44.0		44.0	44.0		24.0	24.0		24.0	24.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	5.0	-1.0			-1.0		-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lead/Lag		0.0			0.0		0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max	(C-Max	C-Max		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0	,	7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		16	16		100	100		100	100	
Act Effct Green (s)	100	45.0			45.0		25.0	25.0		25.0	25.0	
Actuated g/C Ratio		0.56			0.56		0.31	0.31		0.31	0.31	
v/c Ratio		0.95			1.05		0.64	1.09		0.41	0.50	
Control Delay		37.1			61.3		40.2	97.1		46.0	32.4	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		37.1			61.3		40.2	97.1		46.0	32.4	
LOS		D D			01.5 E		40.2 D	51.1 F		40.0 D	02.4 C	
Approach Delay		37.1			61.3		D	85.8		D	33.9	
Approach LOS		37.1			01.5 E			03.0 F			33.3 C	
		U						Г			C	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 80												
Actuated Cycle Length: 80		0.5551	LOWDT		(4.10							
Offset: 42 (53%), Reference	ced to phase	e z:EBIL a	na 6:WB11	L, Start	or 1st Gre	en						
Natural Cycle: 80	oordinated											
Control Type: Actuated-Co	oordinated											
Maximum v/c Ratio: 1.09	EC 2				toroodi	100.5						
Intersection Signal Delay:		2/			tersection		. LI					
Intersection Capacity Utiliz Analysis Period (min) 15	zation 132.2°	70		10	CU Level o	i Service	п					
, , ,	Strachan A	ve & Kina	St St									
*	. Guacilail A	ve a ruily	Οι									
Ø2 (R)							^√0	14				
50 s							30 s					

538: Strachan Ave & King St

09/30/2021

	-	•	1	†	-	. ↓
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	871	775	131	525	31	254
v/c Ratio	0.95	1.05	0.64	1.09	0.41	0.50
Control Delay	37.1	61.3	40.2	97.1	46.0	32.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	37.1	61.3	40.2	97.1	46.0	32.4
Queue Length 50th (m)	57.7	~52.2	16.9	~89.2	4.8	38.6
Queue Length 95th (m)	#94.8	#93.3	#37.9	#136.6	m9.1	m54.4
Internal Link Dist (m)	231.2	334.6		400.1		355.9
Turn Bay Length (m)			25.0		25.0	
Base Capacity (vph)	919	740	206	480	76	505
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.95	1.05	0.64	1.09	0.41	0.50

Intersection Summar

HCM Signalized Intersection Capacity Analysis

538: Strachan Ave & King St

09/30/2021

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT		۶	→	•	•	←	•	4	†	/	>	↓	4
Traffic Volume (vph)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume ("phi)	Lane Configurations		413-			413		7	ĵ,		7	f.	
Ideal Flow (vphpl) 1250	Traffic Volume (vph)	0	627	122	66	560	40	113	335	116	27	199	20
Lane Width	Future Volume (vph)	0	627	122	66	560	40	113	335	116	27	199	20
Total Lost time (s)	Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Lane Util. Factor 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 Frph, pedbikes 0.91 0.99 0.98 1.00 0.96 1.00 0.98 1.00 0.96 1.00 0.98 1.00 0.96 1.00 0.98 1.00 0.99 0.85 1.00 0.96 1.00 0.98 1.00 0.99 0.85 1.00 0.96 1.00 0.99 1.00 0.96 1.00 0.99 1.00 0.96 1.00 0.99 1.00 0.96 1.00 0.99 1.00 0.96 1.00 0.99 1.00 0.96 1.00 0.99 1.00 0.16 1.00 0.78 0.50 1.00 0.16 1.00 0.78 0.50 1.00 0.16 1.00 0.78 0.50 1.00 0.16 1.00 0.78 0.50 1.00 0.16 1.00 0.78 0.50 1.00 0.16 1.00 0.79 0.79 1.00 0.79 1.00 0.16 1.00 0.79 1.00 0.79 1.00 0.79 1.00 0.79 1.00 0.79 1.00 0.79 1.00 0.79 1.00 0.79 1.00 0.70 1.00 0.16 1.00 0.70 0.7	Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Frpb, pedrbikes	Total Lost time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Fipb, ped/bikes	Lane Util. Factor		0.95			0.95		1.00	1.00		1.00	1.00	
Fit 0.98	Frpb, ped/bikes		0.91			0.99		1.00	0.96		1.00	0.98	
Fit Protected	Flpb, ped/bikes		1.00			0.99		0.85	1.00		0.96	1.00	
Satd. Flow (prot) 1598 1675 1241 1487 1460 1602	Frt		0.98			0.99		1.00	0.96		1.00	0.99	
Fit Permitted 1.00 0.78 0.50 1.00 0.16 1.00 Satd. Flow (perm) 1598 1307 659 1487 246 1602 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	Flt Protected		1.00			1.00		0.95	1.00		0.95	1.00	
Satid. Flow (perm) 1598 1307 659 1487 246 1602	Satd. Flow (prot)		1598			1675		1241	1487		1460	1602	
Peak-hour factor, PHF 0.86 0.80	Flt Permitted		1.00			0.78		0.50	1.00		0.16	1.00	
Peak-hour factor, PHF 0.86 0.80	Satd, Flow (perm)		1598			1307		659	1487		246	1602	
Adj. Flow (vph) 0 729 142 77 651 47 131 390 135 31 231 RTOR Reduction (vph) 0 20 0 0 6 0 0 16 0 0 5 Lane Group Flow (vph) 0 851 0 0 769 0 131 509 0 31 249 Confl. Peds. (#hr) 48 285 285 48 205 116		0.86		0.86	0.86		0.86			0.86	0.86		0.86
RTOR Reduction (vph) 0 20 0 6 0 0 16 0 0 5 Lane Group Flow (vph) 0 851 0 0 769 0 131 509 0 31 249 Confl. Bikes (#hr) 48 285 285 48 205 116 116 116 Confl. Bikes (#hr) 37 15 9 15 9 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 9 15 15 15 9 15 15 15 15 15 15 15 15 15 15 15 15 15 16													23
Lane Group Flow (vph) 0 851 0 0 769 0 131 509 0 31 249 Confl. Peds. (#/hr) 48 285 285 48 205 116 116 Confl. Bikes (#/hr) 37 15 9 16 17 15 9 Heavy Vehicles (%) 0% 9% 28% 100% 7% 5% 4% 6% 3% 0% 2% Bus Blockages (#/hr) 24 24 24 24 24 24 0<		0		0	0	6	0	0	16	0	0		0
Confl. Peds. (#/hr) 48 285 285 48 205 116 116 Confl. Bikes (#/hr) 37 15 9 9 Heavy Vehicles (%) 0% 9% 28% 100% 7% 5% 4% 6% 3% 0% 2% Bus Blockages (#/hr) 24 24 24 24 24 0 <td< td=""><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td>131</td><td></td><td>0</td><td></td><td></td><td>0</td></td<>				0	0			131		0			0
Confi. Bikes (#/hr)				285									205
Heavy Vehicles (%)													11
Bus Blockages (#hr)		0%	9%		100%	7%		4%	6%	-	0%	2%	0%
Turn Type													0
Protected Phases 2 6 6 4 8 8 Permitted Phases 2 6 6 4 4 8 Actuated Green, G (s) 44.0 44.0 24.0 24.0 24.0 24.0 25.0 Actuated Green, g (s) 45.0 45.0 25.0 25.0 25.0 25.0 Actuated g/C Ratio 0.56 0.56 0.31 0.31 0.31 0.31 0.31 Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4										•			
Permitted Phases 2 6 4 8 Actuated Green, G (s) 44.0 44.0 26.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 <td></td> <td></td> <td></td> <td></td> <td>1 01111</td> <td></td> <td></td> <td>1 01111</td> <td></td> <td></td> <td>1 01111</td> <td></td> <td></td>					1 01111			1 01111			1 01111		
Actuated Green, G (s)		2	-		6			4	•		8	·	
Effective Green, g (s) 45.0 45.0 26.0 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.30 3.0			44 0			44 0			24 0			24 0	
Actuated g/C Ratio 0.56 0.56 0.31 0.30 3.0 <td></td>													
Clearance Time (s)													
Vehicle Extension (s) 3.0 5.0 4 4.0 5.0 4.0 4.0 1.0													
Lane Grp Cap (vph) 898 735 205 464 76 500 v/s Ratio Prot 0.53 c0.34 0.16 v/s Ratio Perm c0.59 0.20 0.13 v/c Ratio 0.95 1.05 0.64 1.10 0.41 0.50 Uniform Delay, d1 16.4 17.5 23.6 27.5 21.7 22.4 Progression Factor 1.00 0.68 1.00 1.00 1.28 1.30 Incremental Delay, d2 19.7 45.4 14.3 70.9 13.9 3.2 Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Level of Service D E D F D C Approach Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Approach LOS D E D F D C Intersection Summary E F C C HCM 2000 Cohrrol Delay <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
v/s Ratio Prot 0.53 c0.34 0.16 v/s Ratio Perm c0.59 0.20 0.13 v/c Ratio 0.95 1.05 0.64 1.10 0.41 0.50 Uniform Delay, d1 16.4 17.5 23.6 27.5 21.7 22.4 Progression Factor 1.00 0.68 1.00 1.00 1.28 1.30 Incremental Delay, d2 19.7 45.4 14.3 70.9 13.9 3.2 Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Level of Service D E D F D C Approach Delay (s) 36.1 57.3 86.3 33.4 Approach LOS D E F C Intersection Summary F C C Intersection Summary HCM 2000 Level of Service D H HCM 2000 Volume to Capacity ation 1.06 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Int													
v/s Ratio Perm c0.59 0.20 0.13 v/c Ratio 0.95 1.05 0.64 1.10 0.41 0.50 Uniform Delay, d1 16.4 17.5 23.6 27.5 21.7 22.4 Progression Factor 1.00 0.68 1.00 1.00 1.28 1.30 Incremental Delay, d2 19.7 45.4 14.3 70.9 13.9 3.2 Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Level of Service D E D F D C Approach Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Approach LOS D E D F D C Intersection Summary HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D HCM 2000 Volume to Capacity traito 1.06 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity						700		200			70		
v/c Ratio 0.95 1.05 0.64 1.10 0.41 0.50 Uniform Delay, d1 16.4 17.5 23.6 27.5 21.7 22.4 Progression Factor 1.00 0.68 1.00 1.00 1.28 1.30 Incremental Delay, d2 19.7 45.4 14.3 70.9 13.9 3.2 Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Level of Service D E D F D C Approach LOS 36.1 57.3 86.3 33.4 33.4 Approach LOS E F C Intersection Summary HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D D HCM 2000 Volume to Capacity atlo Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H H H			0.55			c0 50		0.20	60.04		0.13	0.10	
Uniform Delay, d1 16.4 17.5 23.6 27.5 21.7 22.4 Progression Factor 1.00 0.68 1.00 1.00 1.28 1.30 Incremental Delay, d2 19.7 45.4 14.3 70.9 13.9 3.2 Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Level of Service D E D F D C Approach Delay (s) 36.1 57.3 86.3 33.4 Approach LOS D E F C C Intersection Summary HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D H H H H Level of Service H Level of Service <			0.05						1 10			0.50	
Progression Factor 1.00 0.68 1.00 1.00 1.28 1.30 Incremental Delay, d2 19.7 45.4 14.3 70.9 13.9 3.2 Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Level of Service D E D F D C Approach Delay (s) 36.1 57.3 86.3 33.4 Approach LOS D E F C Intersection Summary HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H													
Incremental Delay, d2													
Delay (s) 36.1 57.3 37.9 98.4 41.7 32.4 Level of Service D E D F D C Approach Delay (s) 36.1 57.3 86.3 33.4 Approach LOS D E F C Intersection Summary HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H													
Level of Service D E D F D C Approach Delay (s) 36.1 57.3 86.3 33.4 Approach LOS D E F C Intersection Summary HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H													
Approach Delay (s) 36.1 57.3 86.3 33.4 Approach LOS D E F C Intersection Summary HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.06 D Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H													
Approach LOS D E F C Intersection Summary Intersection Summary 54.9 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.06 Sum of lost time (s) 10.0 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H								U			U		
HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H													
HCM 2000 Control Delay 54.9 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H	••												
HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H				54.9	Н	CM 2000	Level of S	Service		D			
Actuated Cycle Length (s) 80.0 Sum of lost time (s) 10.0 Intersection Capacity Utilization 132.2% ICU Level of Service H		ity ratio			- 11	2.71 2000	23101010	2017100					
Intersection Capacity Utilization 132.2% ICU Level of Service H		ity rullo			Q	ım of lost	time (s)			10.0			
		ion											
Analysis Period (min) 15	Analysis Period (min)	011		152.276	ic	C LOVEI (JI JUI VILLE			- "			
c Critical Lane Group				10									

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

09/30/2021

		ᄼ	-	•	•	←	•	4	†	~	/	ţ	1
Traffic Volume (γph) 56 737 86 42 456 106 34 258 44 112 592 42 42 426 106 34 258 44 112 592 42 42 426 106 34 258 44 112 592 42 42 42 426 106 34 258 44 112 592 42 42 42 42 42 42 42	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (γph) 56 737 86 42 456 106 34 258 44 112 592 42 42 426 106 34 258 44 112 592 42 42 426 106 34 258 44 112 592 42 42 42 426 106 34 258 44 112 592 42 42 42 42 42 42 42	Lane Configurations		4134			4134			413			4134	
	Traffic Volume (vph)	56		86	42		106	34		44	112		42
Lane Util. Factor	Future Volume (vph)	56	737	86	42	456	106	34	258	44	112	592	42
Ped Bike Factor	Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1250	1250	1250	1900	1900	1900
Firth	Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Filt Producted	Ped Bike Factor		0.97			0.97			0.98			0.97	
Satd. Flow (prot)	Frt		0.985			0.974			0.980			0.992	
Fit Permitted	Flt Protected		0.997			0.997			0.995			0.993	
Satd. Flow (perm) 0	Satd. Flow (prot)	0	1880	0	0	1813	0	0	1727	0	0	2781	0
Right Turn on Red Satul. Flow (RTOR)	Flt Permitted		0.855			0.761			0.746			0.807	
Satid. Flow (RTOR)	Satd. Flow (perm)	0	1607	0	0	1380	0	0	1289	0	0	2233	0
Link Speed (k/h)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (k/h)	Satd. Flow (RTOR)		19			41			25			8	
Travel Time (s)			50			50			50			50	
Travel Time (s)	-1(-)					316.7							
Confi. Peds. (#/hr)			21.0			22.8			15.3				
Confi. Bikes (#/hr)		129		203	203		129	189		121	121		189
Peak Hour Factor 0.86 0.				73			2			5			118
Heavy Vehicles (%)		0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Bus Blockages (#/hr)													
Adj. Flow (viph)													
Shared Lane Traffic (%) Lane Group Flow (vph) 0 1022 0 0 702 0 0 391 0 0 867 0 0 0 0 0 0 0 0 0											130		
Lane Group Flow (vph)													
Enter Blocked Intersection		0	1022	0	0	702	0	0	391	0	0	867	0
Median Width(m)		No	No	No	No	No	No	No	No	No	No	No	No
Median Width(m)	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.92 1.97 1.92 1.92 2.03 1.92 1.92 2.06 1.92 1.16 1.22 1.16 Turning Speed (k/h) 24 14 <				J .		0.0	J .		0.0	J		0.0	J
Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane 1.92 1.92 1.92 2.03 1.92 1.92 2.06 1.92 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.22 1.16 1.10 1.16 1.22 1.16 1.16 1.22 1.16 1.16 1.22 1.16 1.16 1.22 1.16 1.16 1.22 1.16 1.16 1.22 1.16 1.22 1.16 1.4 1.4 24 1.4 24 1.4 24 1.4 24 <			0.0			0.0			0.0			0.0	
Two way Left Turn Lane Headway Factor 1.92 1.97 1.92 1.92 2.03 1.92 2.06 1.92 1.16 1.22 1.16 1.21 1.16 1.22 1.16 1.10			4.8			4.8			4.8			4.8	
Turning Speed (k/h) 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 74 14 <td></td>													
Turning Speed (k/h) 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 7 14		1.92	1.97	1.92	1.92	2.03	1.92	1.92	2.06	1.92	1.16	1.22	1.16
Protected Phases 2		24		14	24		14	24		14	24		14
Protected Phases 2	Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Permitted Phases 2						6			8			4	
Total Split (s) 41.0 41.0 41.0 41.0 10.0 39.0 29.0 29.0 Total Split (%) 51.3% 51.3% 51.3% 12.5% 48.8% 36.3% 36.3% Maximum Green (s) 35.0 35.0 35.0 35.0 35.0 23.0 23.0 Yellow Time (s) 4.0 4.0 4.0 3.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 Lost Time Adjust (s) -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 4.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dort Walk (s) 11.0 11.0 11.0 14.0 14.0 14.0 Pedestrian Ca		2			6			8			4		
Total Split (s) 41.0 41.0 41.0 41.0 10.0 39.0 29.0 29.0 Total Split (%) 51.3% 51.3% 51.3% 12.5% 48.8% 36.3% 36.3% Maximum Green (s) 35.0 35.0 35.0 35.0 35.0 35.0 23.0 23.0 Yellow Time (s) 4.0 4.0 4.0 3.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 Lost Time Adjust (s) -2.0 -2.0 -1.0	Minimum Split (s)	27.0	27.0		27.0	27.0		10.0	27.0		27.0	27.0	
Total Split (%) 51.3% 51.3% 51.3% 51.3% 51.3% 48.8% 36.3% 36.3% Maximum Green (s) 35.0 35.0 35.0 35.0 6.0 33.0 23.0 23.0 Yellow Time (s) 4.0 4.0 4.0 3.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.					41.0	41.0			39.0		29.0	29.0	
Maximum Green (s) 35.0 35.0 35.0 35.0 35.0 36.0 33.0 23.0 23.0 Yellow Time (s) 4.0 4.0 4.0 3.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 1.0 2.0 2.0 2.0 Lost Time Adjust (s) -2.0 -1.0 -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 4.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Optimize? Yes Yes Yes Yes Walk Time (s) 7.0 <td></td> <td>51.3%</td> <td>51.3%</td> <td></td> <td>51.3%</td> <td>51.3%</td> <td></td> <td></td> <td>48.8%</td> <td></td> <td>36.3%</td> <td>36.3%</td> <td></td>		51.3%	51.3%		51.3%	51.3%			48.8%		36.3%	36.3%	
Yellow Time (s) 4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 1.0 2.0 2.0 2.0 Lost Time (s) 2.0 -1.0 -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 4.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 11.0 11.0 11.0 14.0 14.0 14.0 Pedestrian Calls (#/hr) 100 100 100 100 100 100 100			35.0		35.0				33.0		23.0	23.0	
All-Red Time (s) 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -2.0 -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 4.0 5.0 5.0 5.0 5.0 Lead/Lag Lag Lag Lag-Lag-Lag-Dtimize? Yes Yes Yes Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 14.0 14.0 Pedestrian Calls (#/hr) 100 100 100 100 100 100 100													
Lost Time Adjust (s) -2.0 -1.0 -1.0 -1.0 Total Lost Time (s) 4.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lag Lead-Lag Optimize? Yes Yes Yes Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 11.0 11.0 11.0 14.0 14.0 14.0 Pedestrian Calls (#/hr) 100 100 100 100 100 100	()												
Total Lost Time (s) 4.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lag Lead-Lag Optimize? Yes Yes Yes Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 11.0 11.0 11.0 14.0 14.0 14.0 Pedestrian Calls (#/hr) 100 100 100 100 100 100 100					2.0			1.0			2.0		
Lead/Lag Lead Lag Lag Lead-Lag Optimize? Yes Yes Yes Walk Time (s) 7.0 7													
Lead-Lag Optimize? Yes Yes Yes Yes Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 14.0 14.0 14.0 Pedestrian Calls (#/hr) 100 100 100 100 100 100 100								Lead			Lag		
Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 11.0 11.0 11.0 14.0 14.0 14.0 14.0 14.0 14.0 10.0 <td></td>													
Flash Dont Walk (s) 11.0 11.0 11.0 11.0 14.0 14.0 14.0 Pedestrian Calls (#/hr) 100 100 100 100 100 100 100	0 1	7.0	7.0		7.0	7.0			7.0				
Pedestrian Calls (#/hr) 100 100 100 100 100 100													
	Act Effct Green (s)		37.0			36.0			34.0			24.0	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 13

Lanes, Volumes, Timings 539: Dufferin St & King St

539: Dufferin St 8											09/3	30/2021
	•	→	•	√	←	4	•	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio		0.46			0.45			0.42			0.30	
v/c Ratio		1.36			1.09			0.66			1.28	
Control Delay		190.3			76.9			16.9			166.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		190.3			76.9			16.9			166.4	
LOS		F			Е			В			F	
Approach Delay		190.3			76.9			16.9			166.4	
Approach LOS		F			Е			В			F	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 80												
Actuated Cycle Length: 8												
Offset: 15 (19%), Referen	nced to phase 2	::EBTL a	nd 6:WB	TL, Start	of 1st Gre	en						
Natural Cycle: 140												
Control Type: Pretimed												
Maximum v/c Ratio: 1.36												
Intersection Signal Delay:	: 133.9			In	tersection	LOS: F						
Intersection Capacity Utili	zation 129.8%			IC	U Level o	f Service	Н					
Analysis Period (min) 15												
Splits and Phases: 539	: Dufferin St &	Vina Ct										
A Spills and Friases. 333	. Dullellii St &	King St			14		- L					
→ø2 (R)						Ø3	- ₩	Ø4				
41 s					10 s		29 s					
▼ Ø6 (R)					- -<	Ø8						
* 20 (K)						100						

539: Dufferin St & King St

09/30/2021

	-	•	Ť	¥
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	1022	702	391	867
v/c Ratio	1.36	1.09	0.66	1.28
Control Delay	190.3	76.9	16.9	166.4
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	190.3	76.9	16.9	166.4
Queue Length 50th (m)	~109.3	~62.8	16.1	~89.7
Queue Length 95th (m)	#137.4	#87.6	m18.5	#117.2
Internal Link Dist (m)	267.1	292.7	188.5	361.1
Turn Bay Length (m)				
Base Capacity (vph)	753	643	589	675
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	1.36	1.09	0.66	1.28

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 539: Dufferin St & King St

	۶	→	•	•	+	•	•	†	~	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		414			414			413			413	
Traffic Volume (vph)	56	737	86	42	456	106	34	258	44	112	592	42
Future Volume (vph)	56	737	86	42	456	106	34	258	44	112	592	42
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1250	1250	1250	1900	1900	1900
Total Lost time (s)		4.0			5.0			5.0			5.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.97			0.97			0.98			0.98	
Flpb, ped/bikes		1.00			1.00			1.00			0.99	
Frt		0.99			0.97			0.98			0.99	
Flt Protected		1.00			1.00			0.99			0.99	
Satd. Flow (prot)		1874			1806			1722			2745	
Flt Permitted		0.86			0.76			0.75			0.81	
Satd. Flow (perm)		1607			1380			1292			2232	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	65	857	100	49	530	123	40	300	51	130	688	49
RTOR Reduction (vph)	0	10	0	0	23	0	0	14	0	0	6	(
Lane Group Flow (vph)	0	1012	0	0	679	0	0	377	0	0	861	(
Confl. Peds. (#/hr)	129		203	203		129	189		121	121		189
Confl. Bikes (#/hr)			73			2			5			118
Heavy Vehicles (%)	5%	4%	10%	2%	4%	7%	8%	12%	0%	3%	9%	7%
Bus Blockages (#/hr)	12	12	12	24	24	24	12	30	30	0	18	18
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		2			6		3	8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)		35.0			35.0			33.0			23.0	
Effective Green, g (s)		37.0			36.0			34.0			24.0	
Actuated g/C Ratio		0.46			0.45			0.42			0.30	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Lane Grp Cap (vph)		743			621			586			669	
v/s Ratio Prot								c0.06				
v/s Ratio Perm		c0.63			0.49			0.22			c0.39	
v/c Ratio		1.36			1.09			0.64			1.29	
Uniform Delay, d1		21.5			22.0			18.2			28.0	
Progression Factor		0.83			0.68			0.85			1.00	
Incremental Delay, d2		171.3			59.9			2.0			140.5	
Delay (s)		189.1			74.8			17.5			168.5	
Level of Service		F			Е			В			F	
Approach Delay (s)		189.1			74.8			17.5			168.5	
Approach LOS		F			Е			В			F	
Intersection Summary												
HCM 2000 Control Delay			133.7	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.28									
Actuated Cycle Length (s)			80.0		um of los				13.0			
Intersection Capacity Utiliza	tion		129.8%	IC	CU Level	of Service)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	133.7	HCM 2000 Level of Service	F	
HCM 2000 Volume to Capacity ratio	1.28			
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	13.0	
Intersection Capacity Utilization	129.8%	ICU Level of Service	Н	
Analysis Period (min)	15			
c Critical Lane Group				

	۶	→	•	•	—	•	1	†	~	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1			ની	7	ሻ	fa fa		ሻ	1	
Traffic Volume (vph)	91	86	50	119	56	89	83	327	182	50	301	80
Future Volume (vph)	91	86	50	119	56	89	83	327	182	50	301	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	25.0		0.0	0.0		50.0	30.0		0.0	25.0		0.0
Storage Lanes	1		0	0		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.87	0.97			0.97	0.79	0.98	0.97			0.98	
Frt		0.945				0.850		0.946			0.968	
Flt Protected	0.950				0.967		0.950			0.950		
Satd. Flow (prot)	1589	1655	0	0	1682	1436	1652	1678	0	1620	1708	0
Flt Permitted	0.546				0.659		0.383			0.255		
Satd. Flow (perm)	794	1655	0	0	1108	1135	655	1678	0	435	1708	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		19				152		23			11	
Link Speed (k/h)		30			50			40			40	
Link Distance (m)		143.4			229.0			205.6			241.4	
Travel Time (s)		17.2			16.5			18.5			21.7	
Confl. Peds. (#/hr)	86		29	29		86	19		21	21		19
Confl. Bikes (#/hr)			1									32
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	6%	5%	2%	0%	25%	5%	2%	5%	0%	4%	5%	2%
Adj. Flow (vph)	101	96	56	132	62	99	92	363	202	56	334	89
Shared Lane Traffic (%)												
Lane Group Flow (vph)	101	152	0	0	194	99	92	565	0	56	423	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0	J .		3.0	<u> </u>		3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.01	1.01	1.09	1.09	1.01	1.01	1.09	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5	2.0	2.0	30.5		2.0	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8	2.0	2.0	1.8		2.0	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel		· ·					· ·	· ·			· ·	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7	0.0	0.0	28.7		0.0	28.7	
Detector 2 Fosition(III)		1.8			1.8			1.8			1.8	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Type		OITLX			OITLX			OITLX			OITLX	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 17 Lane Group Ø10 Ø12 Ø14 Ø:
Lane Configurations
Traffic Volume (vph)

571: Strachan Ave & Canada Blvd/Fleet St

Ideal Flow (vphpl) Lane Width (m) Storage Length (m)

Future Volume (vph)

Lanes, Volumes, Timings

Storage Lanes
Taper Length (m)

Lane Util. Factor Ped Bike Factor

Frt

Flt Protected

Satd. Flow (prot) Flt Permitted

Satd. Flow (perm)

Right Turn on Red Satd. Flow (RTOR)

Link Speed (k/h) Link Distance (m)

Travel Time (s)

Confl. Peds. (#/hr) Confl. Bikes (#/hr)

Peak Hour Factor Heavy Vehicles (%)

Adj. Flow (vph) Shared Lane Traffic (%)

Lane Group Flow (vph)
Enter Blocked Intersection

Enter Blocked Interse Lane Alignment

Median Width(m) Link Offset(m)

Crosswalk Width(m)
Two way Left Turn Lane

Headway Factor

Turning Speed (k/h)
Number of Detectors

Detector Template

Leading Detector (m)
Trailing Detector (m)

Detector 1 Position(m)
Detector 1 Size(m)

Detector 1 Type

Detector 1 Channel

Detector 1 Extend (s) Detector 1 Queue (s)

Detector 1 Queue (s)
Detector 1 Delay (s)

Detector 2 Position(m)
Detector 2 Size(m)

Detector 2 Type

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

₩ø6

HDR Corporation

Synchro 11 Report

Page 19

	۶	-	\rightarrow	•	←	•	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	32.0	32.0		32.0	32.0	32.0	29.0	29.0		29.0	29.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	36.0	36.0		36.0	36.0	
Total Split (s)	39.0	39.0		39.0	39.0	39.0	61.0	61.0		61.0	61.0	
Total Split (%)	27.1%	27.1%		27.1%	27.1%	27.1%	42.4%	42.4%		42.4%	42.4%	
Maximum Green (s)	32.0	32.0		32.0	32.0	32.0	54.0	54.0		54.0	54.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	3.0	3.0		3.0	3.0	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	4.0	4.0		4.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0		0.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	25.0	25.0		25.0	25.0	25.0	22.0	22.0		22.0	22.0	
Pedestrian Calls (#/hr)	10	10		28	28	28	7	7		6	6	
Act Effct Green (s)	33.5	33.5		20	33.5	33.5	55.9	55.9		55.9	55.9	
Actuated g/C Ratio	0.30	0.30			0.30	0.30	0.50	0.50		0.50	0.50	
v/c Ratio	0.30	0.30			0.59	0.30	0.30	0.50		0.30	0.30	
Control Delay	42.5	31.2			45.2	2.2	23.5	27.9		25.2	23.4	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.4		0.0	0.0	
Total Delay	42.5	31.2			45.2	2.2	23.5	28.3		25.2	23.4	
LOS	42.5 D	31.2 C			45.2 D	Z.Z A	23.5 C	20.3 C		25.2 C	23.4 C	
	U	35.7			30.7	А	U	27.6		C	23.6	
Approach Delay					30.7 C							
Approach LOS		D			C			С			С	
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 112	2											
Natural Cycle: 130												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.67												
Intersection Signal Delay: 2	28.2			lr	ntersectio	n LOS: C						
Intersection Capacity Utiliza	ation 126.59	6		IC	CU Level	of Service	e H					
Analysis Period (min) 15												
Splits and Phases: 571:	Strachan Av	/e & Cana	da Blvd/F	leet St								
↑ 02				Ă ķ ⊘	010		1Ø4				Ø12	

#1_{Ø14}

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements

iviinimum initiai (s)	7.0	7.0	7.0	7.0
Minimum Split (s)	22.0	22.0	22.0	22.0
Total Split (s)	22.0	22.0	22.0	22.0
Total Split (%)	15%	15%	15%	15%
Maximum Green (s)	14.0	14.0	14.0	14.0
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Vehicle Extension (s)	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None
Walk Time (s)	0.0	0.0	0.0	0.0
Flash Dont Walk (s)	0.0	0.0	0.0	0.0
Pedestrian Calls (#/hr)	19	19	19	19
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Intersection Summary				
intersection Summary				

Lanes, Volumes, Timings

Lane Group
Detector 2 Channel
Detector 2 Extend (s)
Turn Type
Protected Phases

Permitted Phases Detector Phase Switch Phase Minimum Initial (s)

571: Strachan Ave & Canada Blvd/Fleet St

Ø10 Ø12 Ø14 Ø16

10 12 14 16

7.0 7.0

7.0 7.0

	•	-	•	•	4	†	-	ļ	
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	101	152	194	99	92	565	56	423	
v/c Ratio	0.42	0.30	0.59	0.22	0.28	0.67	0.26	0.49	
Control Delay	42.5	31.2	45.2	2.2	23.5	27.9	25.2	23.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	
Total Delay	42.5	31.2	45.2	2.2	23.5	28.3	25.2	23.4	
Queue Length 50th (m)	14.9	18.6	30.3	0.0	8.8	66.9	5.3	44.9	
Queue Length 95th (m)	41.3	47.6	#74.4	2.9	30.3	166.2	21.2	112.9	
Internal Link Dist (m)		119.4	205.0			181.6		217.4	
Turn Bay Length (m)	25.0			50.0	30.0		25.0		
Base Capacity (vph)	238	508	331	446	327	849	217	858	
Starvation Cap Reductn	0	0	0	0	0	55	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.42	0.30	0.59	0.22	0.28	0.71	0.26	0.49	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

or i. Strachan Ave t	x Odila	aa Div	u/i icc	· Ot								
	•	→	\rightarrow	•	←	•	4	†	1	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ»			ર્ન	7		ĵ»		7	ĵ»	
Traffic Volume (vph)	91	86	50	119	56	89	83	327	182	50	301	80
Future Volume (vph)	91	86	50	119	56	89	83	327	182	50	301	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.97			1.00	0.82	1.00	0.98		1.00	0.98	
Flpb, ped/bikes	0.88	1.00			0.97	1.00	0.98	1.00		0.99	1.00	
Frt	1.00	0.94			1.00	0.85	1.00	0.95		1.00	0.97	
Flt Protected	0.95	1.00			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1405	1661			1633	1176	1624	1684		1601	1713	
Flt Permitted	0.55	1.00			0.66	1.00	0.38	1.00		0.26	1.00	
Satd. Flow (perm)	808	1661			1113	1176	655	1684		430	1713	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	101	96	56	132	62	99	92	363	202	56	334	89
RTOR Reduction (vph)	0	14	0	0	0	72	0	12	0	0	6	0
Lane Group Flow (vph)	101	138	0	0	194	27	92	553	0	56	417	0
Confl. Peds. (#/hr)	86		29	29		86	19		21	21		19
Confl. Bikes (#/hr)			1									32
Heavy Vehicles (%)	6%	5%	2%	0%	25%	5%	2%	5%	0%	4%	5%	2%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.5	32.5			32.5	32.5	54.9	54.9		54.9	54.9	
Effective Green, g (s)	33.5	33.5			33.5	33.5	55.9	55.9		55.9	55.9	
Actuated g/C Ratio	0.27	0.27			0.27	0.27	0.46	0.46		0.46	0.46	
Clearance Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	221	455			305	322	299	770		196	783	
v/s Ratio Prot		0.08						c0.33			0.24	
v/s Ratio Perm	0.13				c0.17	0.02	0.14			0.13		
v/c Ratio	0.46	0.30			0.64	0.08	0.31	0.72		0.29	0.53	
Uniform Delay, d1	36.8	35.1			39.0	33.0	20.9	26.8		20.7	23.8	
Progression Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	6.7	1.7			9.7	0.5	2.7	5.7		3.6	2.6	
Delay (s)	43.5	36.8			48.7	33.5	23.6	32.5		24.3	26.4	
Level of Service	D	D			D	С	С	С		С	С	
Approach Delay (s)		39.5			43.6			31.2			26.1	
Approach LOS		D			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			33.2	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ity ratio		0.65	- 11	OW 2000	LCVCIOI	JCI VICC		U			
Actuated Cycle Length (s)	ity ratio		122.2	Q ₁	um of lost	time (s)			28.0			
Intersection Capacity Utilizati	on		126.5%			of Service			20.0 H			
Analysis Period (min)	U11		15	ic	C LOVEI (J. 361 VICE			- 11			
c Critical Lane Group												

c Critical Lane Group

	۶	-	\rightarrow	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1				77		ተተ _ጮ				
Traffic Volume (vph)	54	486	0	0	0	418	0	1402	14	0	0	0
Future Volume (vph)	54	486	0	0	0	418	0	1402	14	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Storage Length (m)	15.0		0.0	0.0		80.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	0		1	0		0	0		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.88	1.00	0.91	0.91	1.00	1.00	1.00
Ped Bike Factor						0.99						
Frt						0.850		0.998				
Flt Protected	0.950											
Satd. Flow (prot)	1620	1807	0	0	0	2652	0	4968	0	0	0	0
Flt Permitted	0.950											
Satd. Flow (perm)	1620	1807	0	0	0	2617	0	4968	0	0	0	0
Right Turn on Red	Yes		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)	99					740		1				
Link Speed (k/h)		60			30			60			60	
Link Distance (m)		411.9			164.9			800.6			492.6	
Travel Time (s)		24.7			19.8			48.0			29.6	
Confl. Peds. (#/hr)							17					17
Confl. Bikes (#/hr)						1						
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	4%	4%	4%	0%	0%	6%	0%	3%	7%	0%	0%	0%
Adj. Flow (vph)	60	540	0	0	0	464	0	1558	16	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	60	540	0	0	0	464	0	1574	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2				1		2				
Detector Template	Left	Thru				Right		Thru				
Leading Detector (m)	6.1	30.5				6.1		30.5				
Trailing Detector (m)	0.0	0.0				0.0		0.0				
Detector 1 Position(m)	0.0	0.0				0.0		0.0				
Detector 1 Size(m)	6.1	1.8				6.1		1.8				
Detector 1 Type	CI+Ex	CI+Ex				CI+Ex		CI+Ex				
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0				0.0		0.0				
Detector 1 Queue (s)	0.0	0.0				0.0		0.0				
Detector 1 Delay (s)	0.0	0.0				0.0		0.0				
Detector 2 Position(m)		28.7						28.7				
Detector 2 Size(m)		1.8						1.8				
Detector 2 Type		Cl+Ex						CI+Ex				

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 23 Lanes, Volumes, Timings

1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

	•	→	\rightarrow	•	←	•	1	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0				
Turn Type	Perm	NA				Perm		NA				
Protected Phases		4						2				
Permitted Phases	4					9						
Detector Phase	4	4				9		2				
Switch Phase												
Minimum Initial (s)	7.0	7.0				7.0		22.0				
Minimum Split (s)	13.0	13.0				30.0		29.0				
Total Split (s)	39.0	39.0				30.0		41.0				
Total Split (%)	35.5%	35.5%				27.3%		37.3%				
Maximum Green (s)	33.0	33.0				24.0		34.0				
Yellow Time (s)	4.0	4.0				4.0		4.0				
All-Red Time (s)	2.0	2.0				2.0		3.0				
Lost Time Adjust (s)	-1.0	-1.0				-1.0		-1.0				
Total Lost Time (s)	5.0	5.0				5.0		6.0				
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Recall Mode	None	None				None		None				
Walk Time (s)	0.0	0.0						7.0				
Flash Dont Walk (s)	0.0	0.0						15.0				
Pedestrian Calls (#/hr)	0	0						0				
Act Effct Green (s)	33.2	33.2				8.0		35.0				
Actuated g/C Ratio	0.36	0.36				0.09		0.38				
v/c Ratio	0.09	0.83				0.51		0.83				
Control Delay	1.7	39.8				2.1		31.0				
Queue Delay	0.0	0.0				0.0		0.0				
Total Delay	1.7	39.8				2.1		31.0				
LOS	Α	D				Α		С				
Approach Delay		36.0			2.1			31.0				
Approach LOS		D			Α			С				
Intersection Summary												
Area Type:	Other											
Cycle Length: 110												
Actuated Cycle Length: 92	2.2											
Natural Cycle: 100												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 0.83												
Intersection Signal Delay:	27.0			In	tersection	LOS: C						
Intersection Capacity Utili	zation 62.1%			IC	U Level	of Service	В					
Analysis Period (min) 15												
Splits and Phases: 134	4: Lakeshore	Blvd & Br	itish Colo	mbia Rd								
A				1014					Ø9			

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

	•	-	•	Ť
Lane Group	EBL	EBT	WBR	NBT
Lane Group Flow (vph)	60	540	464	1574
v/c Ratio	0.09	0.83	0.51	0.83
Control Delay	1.7	39.8	2.1	31.0
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	1.7	39.8	2.1	31.0
Queue Length 50th (m)	0.0	86.2	0.0	92.6
Queue Length 95th (m)	3.0	#139.0	0.0	111.7
Internal Link Dist (m)		387.9		776.6
Turn Bay Length (m)	15.0		80.0	
Base Capacity (vph)	660	666	1249	1887
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.09	0.81	0.37	0.83

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

	•	→	•	•	+	•	1	1	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	<u></u>				77		ተ ተጉ				
Traffic Volume (vph)	54	486	0	0	0	418	0	1402	14	0	0	0
Future Volume (vph)	54	486	0	0	0	418	0	1402	14	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0				5.0		6.0				
Lane Util. Factor	1.00	1.00				0.88		0.91				
Frpb, ped/bikes	1.00	1.00				0.99		1.00				
Flpb, ped/bikes	1.00	1.00				1.00		1.00				
Frt	1.00	1.00				0.85		1.00				
Flt Protected	0.95	1.00				1.00		1.00				
Satd. Flow (prot)	1620	1807				2613		4970				
Flt Permitted	0.95	1.00				1.00		1.00				
Satd. Flow (perm)	1620	1807				2613		4970				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	60	540	0	0	0	464	0	1558	16	0	0	0
RTOR Reduction (vph)	38	0	0	0	0	424	0	1	0	0	0	0
Lane Group Flow (vph)	22	540	0	0	0	40	0	1573	0	0	0	0
Confl. Peds. (#/hr)			-	-	-		17		-	-	-	17
Confl. Bikes (#/hr)						1						
Heavy Vehicles (%)	4%	4%	4%	0%	0%	6%	0%	3%	7%	0%	0%	0%
Turn Type	Perm	NA		• • • • • • • • • • • • • • • • • • • •		Perm		NA				
Protected Phases		4						2				
Permitted Phases	4					9						
Actuated Green, G (s)	32.2	32.2				7.0		34.0				
Effective Green, g (s)	33.2	33.2				8.0		35.0				
Actuated g/C Ratio	0.36	0.36				0.09		0.38				
Clearance Time (s)	6.0	6.0				6.0		7.0				
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Lane Grp Cap (vph)	583	650				226		1886				
v/s Ratio Prot	500	c0.30				220		c0.32				
v/s Ratio Perm	0.01	00.00				c0.02		00.02				
v/c Ratio	0.04	0.83				0.18		0.83				
Uniform Delay, d1	19.1	26.9				39.1		26.0				
Progression Factor	1.00	1.00				1.00		1.00				
Incremental Delay, d2	0.0	8.9				0.4		3.3				
Delay (s)	19.2	35.8				39.4		29.3				
Level of Service	В	D				D D		23.5 C				
Approach Delay (s)	ь	34.1			39.4	D		29.3			0.0	
Approach LOS		C C			D D			23.3 C			Α	
Intersection Summary												
HCM 2000 Control Delay			32.2	Н	CM 2000	Level of S	Service		С			
HCM 2000 Control Delay HCM 2000 Volume to Capa	city ratio		0.77	- 11	OM 2000	LOVOI OI C	JOI VICO		0			
Actuated Cycle Length (s)	only ratio		92.2	Q	um of lost	time (s)			17.0			
Intersection Capacity Utiliza	tion		62.1%		CU Level o				17.0 B			
Analysis Period (min)	uon		15	IC	O LEVEL	, oeivice			U			
c Critical Lane Group			10									

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

09/30/2021

	۶	-	•	•	←	•	4	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			413			414	
Traffic Volume (vph)	5	0	6	129	0	71	2	307	518	130	674	0
Future Volume (vph)	5	0	6	129	0	71	2	307	518	130	674	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1250	1400	1250	1250	1250	1250
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.76			0.72			0.67			0.98	
Frt		0.921			0.952			0.906				
Flt Protected		0.980			0.969						0.992	
Satd. Flow (prot)	0	1364	0	0	1549	0	0	1433	0	0	2021	0
Flt Permitted		0.898			0.798			0.954			0.645	
Satd. Flow (perm)	0	1178	0	0	1009	0	0	1367	0	0	1288	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		41			41			23				
Link Speed (k/h)		50			40			50			50	
Link Distance (m)		106.6			106.9			249.2			212.5	
Travel Time (s)		7.7			9.6			17.9			15.3	
Confl. Peds. (#/hr)	180		338	338		180	356		252	252		356
Confl. Bikes (#/hr)									5			153
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	0%	2%	0%	1%	0%	4%	0%	12%	1%	0%	10%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	12	30	30	12	30	30
Adj. Flow (vph)	5	0	7	140	0	77	2	334	563	141	733	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	12	0	0	217	0	0	899	0	0	874	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	_		0.0	_		0.0	_		0.0	_
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.70	1.60	1.70	1.70	1.83	1.70
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 27

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

	۶	→	•	•	←	•	4	1	~	/	ţ	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Minimum Split (s)	24.0	24.0		24.0	24.0		25.0	25.0		25.0	25.0	
Total Split (s)	24.0	24.0		24.0	24.0		56.0	56.0		56.0	56.0	
Total Split (%)	30.0%	30.0%		30.0%	30.0%		70.0%	70.0%		70.0%	70.0%	
Maximum Green (s)	19.0	19.0		19.0	19.0		50.0	50.0		50.0	50.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-3.0			-1.0	
Total Lost Time (s)		4.0			4.0			3.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	100	100		100	100		100	100		100	100	
Act Effct Green (s)		19.6			19.6			53.4			51.4	
Actuated g/C Ratio		0.24			0.24			0.67			0.64	
v/c Ratio		0.04			0.78			1.19dr			1.06	
Control Delay		0.5			44.2			42.3			58.5	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		0.5			44.2			42.3			58.5	
LOS		Α			D			D			E	
Approach Delay		0.5			44.2			42.3			58.5	
Approach LOS		Α			D			D			Е	
Intersection Summary												
Area Type: (Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 40 (50%), Referenced	d to phase	2:NBTL a	ind 6:SB	TL, Start	of Green							
Natural Cycle: 90												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 1.06												
Intersection Signal Delay: 49					ntersection							
Intersection Capacity Utilizati	ion 104.09	%		IC	CU Level of	of Service	G					
Analysis Period (min) 15												
dr Defacto Right Lane. Re	code with	1 though	ane as a	right lane	9.							
Splits and Phases: 1449: [Dufferin St	t & Dwy/Li	berty St									
¶ Ø2 (R)								- - -	0 4			
56 s								24 s				

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Ø6 (R)

Synchro 11 Report Page 28

1449: Dufferin St & Dwy/Liberty St

09/30/2021

Synchro 11 Report

Page 29

	-	•	†	Į.
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	12	217	899	874
v/c Ratio	0.04	0.78	1.19dr	1.06
Control Delay	0.5	44.2	42.3	58.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	0.5	44.2	42.3	58.5
Queue Length 50th (m)	0.0	24.9	73.4	~68.4
Queue Length 95th (m)	0.5	#59.7	#112.4	m48.0
Internal Link Dist (m)	82.6	82.9	225.2	188.5
Turn Bay Length (m)				
Base Capacity (vph)	325	283	920	827
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.04	0.77	0.98	1.06

- Volume exceeds capacity, queue is theoretically infinite.
- Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

HCM Signalized Intersection Capacity Analysis

1449: Dufferin St & Dwy/Liberty St

09/30/2021

	8 130 8 130 0 1250 2 0.92 3 141 0 0	674 674 1250 5.0 0.95 1.00 0.98 1.00 0.99 1981 0.64 1288	
Traffic Volume (vph) 5 0 6 129 0 71 2 307 51 Future Volume (vph) 5 0 6 129 0 71 2 307 51 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1250 1400 125 Total Lost time (s) 4.0 4.0 4.0 3.0 3.0 Lane Util. Factor 1.00 1.00 0.95 Frpb, ped/bikes 0.80 0.91 0.67 Fipb, ped/bikes 0.94 0.79 1.00 51 0.67 Fit Protected 0.98 0.97 1.00 51 1.00	2 0.92 3 141 0 0 0	674 674 1250 5.0 0.95 1.00 0.98 1.00 0.99 1981 0.64 1288	0
Traffic Volume (vph) 5 0 6 129 0 71 2 307 51 Future Volume (vph) 5 0 6 129 0 71 2 307 51 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1250 1400 125 Total Lost time (s) 4.0 4.0 4.0 3.0 3.0 Lane Uili. Factor 1.00 1.00 0.95 Frppb, ped/bikes 0.80 0.91 0.67 Fipb, ped/bikes 0.94 0.79 1.00 5 1.00 1.00 Frt 0.92 0.92 0.95 0.91 1.00	2 0.92 3 141 0 0 0	674 674 1250 5.0 0.95 1.00 0.98 1.00 0.99 1981 0.64 1288	0
Future Volume (vph)	0 1250 2 0.92 3 141 0 0	1250 5.0 0.95 1.00 0.98 1.00 0.99 1981 0.64 1288	0
Ideal Flow (vphpl)	0 1250 2 0.92 3 141 0 0	1250 5.0 0.95 1.00 0.98 1.00 0.99 1981 0.64 1288	1250
Total Lost time (s)	3 141 0 0	0.95 1.00 0.98 1.00 0.99 1981 0.64 1288	
Lane Util. Factor 1.00 1.00 0.95 Frpb, ped/bikes 0.80 0.91 0.67 Frpb, ped/bikes 0.94 0.79 1.00 Frt 0.92 0.95 0.91 Fit Protected 0.98 0.97 1.00 Satd. Flow (prot) 1286 1225 1433 Fit Permitted 0.90 0.80 0.95 Satd. Flow (perm) 1178 1008 1367 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	3 141 0 0	1.00 0.98 1.00 0.99 1981 0.64 1288	
Frpb, ped/bikes 0.80 0.91 0.67 Flpb, ped/bikes 0.94 0.79 1.00 Flt Protected 0.98 0.97 1.00 Satd. Flow (prot) 1286 1225 1433 Flt Permitted 0.90 0.80 0.95 Satd. Flow (perm) 1178 1008 1367 Peak-hour factor, PHF 0.92	3 141 0 0	0.98 1.00 0.99 1981 0.64 1288	
Fipb, ped/bikes	3 141 0 0	1.00 0.99 1981 0.64 1288	
Fit	3 141 0 0	1.00 0.99 1981 0.64 1288	
Fit Protected 0.98 0.97 1.00 Satd. Flow (prot) 1286 1225 1433 1436	3 141 0 0	0.99 1981 0.64 1288	
Satd. Flow (prot) 1286 1225 1433 Fit Permitted 0.90 0.80 0.95 Satd. Flow (perm) 1178 1008 1367 Peak-hour factor, PHF 0.92 0.93 18 0.8 0.25 0.8	3 141 0 0	1981 0.64 1288	
Fit Permitted 0.90 0.80 0.95 Satd. Flow (perm) 1178 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	3 141 0 0	0.64 1288	
Satd. Flow (perm) 1178 1008 1367 Peak-hour factor, PHF 0.92 0.93 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92	3 141 0 0	1288	
Peak-hour factor, PHF 0.92 0.93 1.86 0.81 1.80 3.83 3.83 3.83 180 356 2.25 Confl. Bikes (#hr) 1 0 0 0 0 0 0 0 0 12% 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2<	3 141 0 0		
Adj. Flow (vph) 5 0 7 140 0 77 2 334 56 RTOR Reduction (vph) 0 9 0 0 31 0 0 89 Lane Group Flow (vph) 0 3 0 0 186 0 0 891 Confl. Pales, (#/hr) 180 338 338 180 356 25 Confl. Bikes (#/hr) 0 0 1% 0% 4% 0% 12% 1 Bus Blockages (#/hr) 0 0 0 0 0 0 12% 1 Turn Type Perm NA SA 2 2 Actua	3 141 0 0		0.92
RTOR Reduction (vph) 0 9 0 0 31 0 0 8 Lane Group Flow (vph) 0 3 0 0 186 0 0 891 Confl. Places (#hr) 180 338 338 180 356 25 Confl. Bikes (#hr) 0 0 1% 0% 4% 0% 12% 1* Bus Blockages (#/hr) 0 0 0 0 0 12 30 3 4 4 4 8 2 2 4 4 8 1 <td>0 0</td> <td></td> <td>0.32</td>	0 0		0.32
Lane Group Flow (vph) 0 3 0 0 186 0 0 891 Confl. Peds. (#hr) 180 338 338 180 356 25 Confl. Bikes (#hr) 180 338 338 180 356 25 Confl. Bikes (#hr) 0 0 0 19 0% 4% 0% 12% 11 Bus Blockages (#hr) 0 0 0 0 0 0 0 12 30 3 Turn Type Perm NA Perm			0
Confl. Peds. (#/hr) 180 338 338 180 356 25 Confl. Bikes (#/hr) 0% 2% 0% 1% 0% 4% 0% 12% 1 Bus Blockages (#/hr) 0 0 0 0 0 0 0 12% 3 3 Turn Type Perm NA Perm NA <td>0 0</td> <td>-</td> <td>0</td>	0 0	-	0
Confi. Bikes (#hr) Heavy Vehicles (%) Heavy Vehicles (%) Bus Blockages (#hr) 0 0 0 0 0 0 0 12 30 3 Turn Type Perm NA Protected Phases 4 8 2 Permitted Phases 4 8 2 Actuated Green, G (s) Effective Green, g (s) 18.6 18.6 50.4 Effective Green, g (s) 19.6 19.6 53.4 Actuated g/C Ratio 0.25 0.25 0.67 Clearance Time (s) 5.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 Vehicle Extension (s) 28 246 912 v/s Ratio Prot v/s Ratio Prot v/s Ratio Derm 0.00 0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25			356
Heavy Vehicles (%)	2 202 5		153
Bus Blockages (#lhr) 0 0 0 0 0 12 30 3 Turn Type Perm NA Perm NA Perm NA Protected Phases 4 8 2 2 Permitted Phases 4 8 2 2 Actuated Green, G (s) 18.6 18.6 50.4 50.4 Effective Green, g (s) 19.6 19.6 53.4 Actuated g/C Ratio 0.25 0.25 0.67 0.67 Clearance Time (s) 5.0 5.0 6.0 O O Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Santa or Time (s) Vehicle Extension (s) 3.0 3.0 3.0 3.0 Santa or Time (s) Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Santa or Time (s) Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 <td< td=""><td>-</td><td>10%</td><td>0%</td></td<>	-	10%	0%
Turn Type Perm NA Perm NA Perm NA Protected Phases 4 8 2 Permitted Phases 4 8 2 Actuated Green, G (s) 18.6 18.6 50.4 Effective Green, g (s) 19.6 19.6 53.4 Actuated g/C Ratio 0.25 0.25 0.67 Clearance Time (s) 5.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 288 246 912 v/s Ratio Prot v/s Ratio Prot 0.00 0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25			30
Protected Phases 4 8 2 Permitted Phases 4 8 2 Actuated Green, G (s) 18.6 18.6 50.4 Effective Green, g (s) 19.6 19.6 53.4 Actuated g/C Ratio 0.25 0.25 0.67 Clearance Time (s) 5.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 Uehicle Extension (s) 288 246 912 v/s Ratio Prot v/s Ratio Prot v/s Ratio Derm 0.00 0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25	Perm		30
Permitted Phases 4 8 2 Actuated Green, G (s) 18.6 18.6 50.4 Effective Green, g (s) 19.6 19.6 53.4 Actuated g/C Ratio 0.25 0.25 0.67 Clearance Time (s) 5.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 Jane Grp Cap (vph) 288 246 912 v/s Ratio Prot v/s Ratio Perm 0.00 c0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25	Pellii	NA 6	
Actuated Green, G (s) 18.6 18.6 50.4 Effective Green, g (s) 19.6 19.6 53.4 Actuated g/C Ratio 0.25 0.25 0.67 Clearance Time (s) 5.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 288 246 912 v/s Ratio Prot v/s Ratio Prot v/s Ratio Derm 0.00 c0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25	6		
Effective Green, g (s) 19.6 19.6 53.4 Actuated g/C Ratio 0.25 0.25 0.67 Clearance Time (s) 5.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 288 246 912 v/s Ratio Prot v/s Ratio Perm 0.00 c0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25	0	50.4	
Actuated g/C Ratio 0.25 0.25 0.67 Clearance Time (s) 5.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 288 246 912 v/s Ratio Prot v/s Ratio Perm 0.00 c0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25		51.4	
Clearance Time (s) 5.0 5.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 288 246 912 v/s Ratio Prot v/s Ratio Perm 0.00 c0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25		0.64	
Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 288 246 912 v/s Ratio Prot v/s Ratio Perm 0.00 c0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25		6.0	
Lane Grp Cap (vph) 288 246 912 v/s Ratio Prot 918 918 918 v/s Ratio Perm 0.00 0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25		3.0	
v/s Ratio Prot v/s Ratio Perm 0.00 c0.18 0.65 v/c Ratio 0.01 0.76 1.19dr u/c Inform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25			
v/s Ratio Perm 0.00 c0.18 0.65 v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25		827	
v/c Ratio 0.01 0.76 1.19dr Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25		0.00	
Uniform Delay, d1 22.9 28.0 12.7 Progression Factor 1.00 1.00 1.25		c0.68	
Progression Factor 1.00 1.00 1.25		1.06	
		14.3	
Incremental Delay, d2 0.0 12.4 24.6		2.11	
		28.8	
Delay (s) 22.9 40.4 40.5		58.9	
Level of Service C D D		Е	
Approach Delay (s) 22.9 40.4 40.5		58.9	
Approach LOS C D D		Е	
Intersection Summary			
HCM 2000 Control Delay 48.4 HCM 2000 Level of Service)		
HCM 2000 Volume to Capacity ratio 0.97			
Actuated Cycle Length (s) 80.0 Sum of lost time (s) 9.	0		
	3		
Analysis Period (min) 15			
dr Defacto Right Lane. Recode with 1 though lane as a right lane.			
c Critical Lane Group			

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements

Lanes, Volumes, Timings 1628: Shaw St & King St

09/30/2021

	۶	-	\rightarrow	•	—	•	4	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			413			414			413	
Traffic Volume (vph)	21	673	17	0	593	86	63	226	19	107	87	116
Future Volume (vph)	21	673	17	0	593	86	63	226	19	107	87	116
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.99			0.99			0.96			0.88	
Frt		0.996			0.981			0.991			0.944	
Flt Protected		0.999						0.990			0.983	
Satd. Flow (prot)	0	1815	0	0	1817	0	0	3071	0	0	2351	0
Flt Permitted		0.920						0.801			0.713	
Satd. Flow (perm)	0	1670	0	0	1817	0	0	2408	0	0	1659	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			37			10			133	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		199.1			255.2			127.7			380.6	
Travel Time (s)		14.3			18.4			11.5			34.3	
Confl. Peds. (#/hr)	87		289	289		87	239		126	126		239
Confl. Bikes (#/hr)						19						
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	100%	7%	0%	100%	8%	2%	5%	1%	0%	33%	2%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	24	774	20	0	682	99	72	260	22	123	100	133
Shared Lane Traffic (%)	=:			-								
Lane Group Flow (vph)	0	818	0	0	781	0	0	354	0	0	356	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.92	2.03	1.92	1.92	2.03	1.92	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	01123	O. LX		O. LA	O. LA		0. Ex	0. Lx		0. Lx	O. LA	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OFFER			OITLA			OITEX			OIYLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
	Perm	NA			NA		Perm	NA		Perm	NA	
Turn Type	reiin	INA			INA		reim	INA		reiin	INA	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 31

Lanes, Volumes, Timings 1628: Shaw St & King St

	•	-	•	•	←	•	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	22.0	22.0		22.0	22.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	28.0	28.0		28.0	28.0		26.0	26.0		26.0	26.0	
Total Split (s)	44.0	44.0		44.0	44.0		26.0	26.0		26.0	26.0	
Total Split (%)	62.9%	62.9%		62.9%	62.9%		37.1%	37.1%		37.1%	37.1%	
Maximum Green (s)	38.0	38.0		38.0	38.0		20.0	20.0		20.0	20.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	15.0	15.0		15.0	15.0		13.0	13.0		13.0	13.0	
Pedestrian Calls (#/hr)	100	100		29	29		100	100		100	100	
Act Effct Green (s)		39.0			39.0			21.0			21.0	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
v/c Ratio		0.88			0.76			0.49			0.60	
Control Delay		26.6			17.4			22.2			17.8	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		26.6			17.4			22.2			17.8	
LOS		С			В			С			В	
Approach Delay		26.6			17.4			22.2			17.8	
Approach LOS		С			В			С			В	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 1 (1%), Referenced		EBTL and	6:WBTL	. Start of	1st Green							
Natural Cycle: 65				,								
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.88												
Intersection Signal Delay:	21.5			Ir	ntersection	LOS: C						
Intersection Capacity Utiliz		%		I	CU Level o	of Service	G					
Analysis Period (min) 15		-		-								
Splits and Phases: 1628	3: Shaw St 8	Kina St										
A	5.10.1 51 0	9 01										
→ Ø2 (R)							170	14				

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Ø6 (R)

Synchro 11 Report Page 32

Ø8

1628: Shaw St & King St

09/30/2021

	-	-	†	Ų.
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	818	781	354	356
v/c Ratio	0.88	0.76	0.49	0.60
Control Delay	26.6	17.4	22.2	17.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	26.6	17.4	22.2	17.8
Queue Length 50th (m)	44.2	35.8	19.2	12.4
Queue Length 95th (m)	#79.1	54.8	29.5	24.2
Internal Link Dist (m)	175.1	231.2	103.7	356.6
Turn Bay Length (m)				
Base Capacity (vph)	933	1028	729	590
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.88	0.76	0.49	0.60

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1628: Shaw St & King St

	•	→	\rightarrow	•	←	•	4	†	/	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			414			413			414	
Traffic Volume (vph)	21	673	17	0	593	86	63	226	19	107	87	116
Future Volume (vph)	21	673	17	0	593	86	63	226	19	107	87	116
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.99			0.99			0.99			0.90	
Flpb, ped/bikes		1.00			1.00			0.97			0.97	
Frt		1.00			0.98			0.99			0.94	
Flt Protected		1.00			1.00			0.99			0.98	
Satd. Flow (prot)		1813			1817			2976			2287	
Flt Permitted		0.92			1.00			0.80			0.71	
Satd. Flow (perm)		1671			1817			2408			1659	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	24	774	20	0	682	99	72	260	22	123	100	133
RTOR Reduction (vph)	0	3	0	0	16	0	0	7	0	0	93	0
Lane Group Flow (vph)	0	815	0	0	765	0	0	347	0	0	263	0
Confl. Peds. (#/hr)	87		289	289		87	239		126	126		239
Confl. Bikes (#/hr)						19						
Heavy Vehicles (%)	100%	7%	0%	100%	8%	2%	5%	1%	0%	33%	2%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		38.0			38.0			20.0			20.0	
Effective Green, g (s)		39.0			39.0			21.0			21.0	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		930			1012			722			497	
v/s Ratio Prot					0.42							
v/s Ratio Perm		c0.49						0.14			c0.16	
v/c Ratio		0.88			0.76			0.48			0.53	
Uniform Delay, d1		13.4			11.9			20.0			20.4	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		11.4			5.2			0.5			1.0	
Delay (s)		24.8			17.1			20.5			21.4	
Level of Service		С			В			С			С	
Approach Delay (s)		24.8			17.1			20.5			21.4	
Approach LOS		С			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			21.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.75									
Actuated Cycle Length (s)			70.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utilizat	ion		104.1%		U Level)		G			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	21.0	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.75			
Actuated Cycle Length (s)	70.0	Sum of lost time (s)	10.0	
Intersection Capacity Utilization	104.1%	ICU Level of Service	G	
Analysis Period (min)	15			
O 111 O				

c Critical Lane Group

	۶	-	\rightarrow	•	←	•	4	†	1	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			4			4	
Traffic Volume (vph)	0	791	5	0	680	112	0	5	0	163	0	96
Future Volume (vph)	0	791	5	0	680	112	0	5	0	163	0	96
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			0.98						0.90	
Frt		0.999			0.979						0.950	
Flt Protected											0.969	
Satd. Flow (prot)	0	1701	0	0	1745	0	0	1409	0	0	1347	0
Flt Permitted											0.805	
Satd. Flow (perm)	0	1701	0	0	1745	0	0	1409	0	0	1080	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			41						41	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		318.4			199.1			158.6			196.7	
Travel Time (s)		22.9			14.3			11.4			14.2	
Confl. Peds. (#/hr)	73		219	219		73	158		49	49		158
Confl. Bikes (#/hr)						15						
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	0%	18%	0%	0%	11%	8%	0%	20%	0%	6%	0%	10%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	0	899	6	0	773	127	0	6	0	185	0	109
Shared Lane Traffic (%)	0	000	U	•	770	121	•	U	U	100	U	100
Lane Group Flow (vph)	0	905	0	0	900	0	0	6	0	0	294	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	0.0	rugiit	Loit	0.0	rugiit	Loit	0.0	rugiit	Loit	0.0	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.92	2.03	1.92	1.92	2.03	1.92	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24	2.00	14	24	2.00	14	24	1.10	14	24	1.10	14
Number of Detectors	1	2		1	2	- 11	1	2	1.7	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	CITLX	CITLX		CITLX	CITLX		CITLX	CITLX		CITLX	CITLX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Type Detector 2 Channel		CITEX			CITEX			CITEX			CITEX	
Detector 2 Channel Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
										Dam		
Turn Type		NA			NA			NA		Perm	NA	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 35 Lanes, Volumes, Timings 1851: King St & Sudbury St

Lane Group Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Intersection Summary

۶	→	7 1	+	•	1	†	<i>></i>	/	+	*
EBL	EBT	EBR WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
	2		6			8			4	
2		6			8			4		
2	2	6	6		8	8		4	4	
24.0	24.0	24.0			21.0	21.0		21.0	21.0	
30.0	30.0	30.0	30.0		26.0	26.0		26.0	26.0	
53.0	53.0	53.0	53.0		27.0	27.0		27.0	27.0	
66.3%	66.3%	66.3%			33.8%	33.8%		33.8%	33.8%	
47.0	47.0	47.0			22.0	22.0		22.0	22.0	
4.0	4.0	4.0			3.0	3.0		3.0	3.0	
2.0	2.0	2.0			2.0	2.0		2.0	2.0	
	-1.0		-1.0			-1.0			-1.0	
	5.0		5.0			4.0			4.0	
3.0	3.0	3.0			3.0	3.0		3.0	3.0	
C-Max	C-Max	C-Max			None	None		None	None	
7.0	7.0	7.0	7.0		7.0	7.0		7.0	7.0	
17.0	17.0	17.0	17.0		14.0	14.0		14.0	14.0	
100	100	24			100	100		16	16	
	48.2		48.2			22.8			22.8	
	0.60		0.60			0.28			0.28	
	0.88		0.84			0.01			0.88	
	26.2		21.8			20.6			51.5	
	0.0		0.0			0.0			0.0	
	26.2		21.8			20.6			51.5	
	С		С			С			D	
	26.2		21.8			20.6			51.5	
	С		С			С			D	

CBD Area Type: Cycle Length: 80 Actuated Cycle Length: 80

Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green

Natural Cycle: 80

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.88

Intersection Signal Delay: 27.8

Intersection LOS: C ICU Level of Service C Intersection Capacity Utilization 71.9%

Analysis Period (min) 15

Splits and Phases: 1851: King St & Sudbury St

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 36

1851: King St & Sudbury St

09/30/2021

	-	←	- ↑	Ţ
	-		'	•
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	905	900	6	294
v/c Ratio	0.88	0.84	0.01	0.88
Control Delay	26.2	21.8	20.6	51.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	26.2	21.8	20.6	51.5
Queue Length 50th (m)	55.9	50.7	0.7	36.8
Queue Length 95th (m)	#98.0	#83.3	3.2	#77.7
Internal Link Dist (m)	294.4	175.1	134.6	172.7
Turn Bay Length (m)				
Base Capacity (vph)	1025	1067	405	339
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.88	0.84	0.01	0.87

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1851: King St & Sudbury St

_	1	12	^	12	۸	1

	۶	-	•	•	←	•	•	†	<i>></i>	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			4			4	
Traffic Volume (vph)	0	791	5	0	680	112	0	5	0	163	0	96
Future Volume (vph)	0	791	5	0	680	112	0	5	0	163	0	96
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			4.0			4.0	
Lane Util. Factor		0.95			0.95			1.00			1.00	
Frpb, ped/bikes		1.00			0.98			1.00			0.93	
Flpb, ped/bikes		1.00			1.00			1.00			0.97	
Frt		1.00			0.98			1.00			0.95	
Flt Protected		1.00			1.00			1.00			0.97	
Satd. Flow (prot)		1701			1744			1409			1300	
Flt Permitted		1.00			1.00			1.00			0.81	
Satd. Flow (perm)		1701			1744			1409			1080	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	0	899	6	0	773	127	0	6	0	185	0	109
RTOR Reduction (vph)	0	0	0	0	16	0	0	0	0	0	29	0
Lane Group Flow (vph)	0	905	0	0	884	0	0	6	0	0	265	0
Confl. Peds. (#/hr)	73		219	219		73	158		49	49		158
Confl. Bikes (#/hr)						15						
Heavy Vehicles (%)	0%	18%	0%	0%	11%	8%	0%	20%	0%	6%	0%	10%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA			NA			NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)		47.2			47.2			21.8			21.8	
Effective Green, g (s)		48.2			48.2			22.8			22.8	
Actuated g/C Ratio		0.60			0.60			0.29			0.29	
Clearance Time (s)		6.0			6.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1024			1050			401			307	
v/s Ratio Prot		c0.53			0.51			0.00				
v/s Ratio Perm											c0.25	
v/c Ratio		0.88			0.84			0.01			0.86	
Uniform Delay, d1		13.5			12.8			20.5			27.1	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		11.0			8.2			0.0			21.2	
Delay (s)		24.5			21.0			20.6			48.3	
Level of Service		С			С			С			D	
Approach Delay (s)		24.5			21.0			20.6			48.3	
Approach LOS		С			С			С			D	
Intersection Summary												
HCM 2000 Control Delay			26.3	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	ratio		0.88									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilization			71.9%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	26.3	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.88			
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	9.0	
Intersection Capacity Utilization	71.9%	ICU Level of Service	С	
Analysis Period (min)	15			

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 1912: Atlantic Ave & King St

₩ Ø6 (R)

	-	•	•	←	4	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† p	LDI	1102	414	ኘ	7
Traffic Volume (vph)	697	73	4	779	295	180
Future Volume (vph)	697	73	4	779	295	180
Ideal Flow (vphpl)	1250	1250	1250	1250	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.0	3.0
Storage Length (m)	5.5	0.0	0.0	5.5	30.0	0.0
Storage Length (III)		0.0	0.0		30.0	1
Taper Length (m)		U	7.5		7.5	- 1
Lane Util. Factor	0.95	0 0F		0 OF	1.00	1.00
		0.95	0.95	0.95 1.00		
Ped Bike Factor	0.95			1.00	0.95	0.96
Frt	0.986				0.050	0.850
Fit Protected	4700			4001	0.950	4450
Satd. Flow (prot)	1703	0	0	1821	1458	1159
Flt Permitted				0.950	0.950	
Satd. Flow (perm)	1703	0	0	1729	1383	1110
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	25					19
Link Speed (k/h)	50			50	30	
Link Distance (m)	191.3			318.4	198.0	
Travel Time (s)	13.8			22.9	23.8	
Confl. Peds. (#/hr)		387	387		49	30
Confl. Bikes (#/hr)		5	30.			
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	11%	6%	100%	10%	4%	17%
Bus Blockages (#/hr)	24	24	24	24	0	0
Adj. Flow (vph)	810	85	5	906	343	209
	010	00	0	900	343	209
Shared Lane Traffic (%)	005		•	044	242	000
Lane Group Flow (vph)	895	0	0	911	343	209
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	2.03	1.92	1.92	2.03	1.25	1.25
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (m)	30.5		6.1	30.5	6.1	6.1
	0.0		0.0	0.0	0.0	0.0
Trailing Detector (m)						
Detector 1 Position(m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Size(m)	1.8		6.1	1.8	6.1	6.1
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

	-	•	€	←	4	-
Lane Group	EBT	EBR \	WBL	WBT	NBL	NBR
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel				A		
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA	F	erm	NA	Perm	Perm
Protected Phases	2			6		
Permitted Phases			6		8	8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	21.0		21.0	21.0	20.0	20.0
Minimum Split (s)	28.0		28.0	28.0	26.0	26.0
Total Split (s)	44.0		44.0	44.0	26.0	26.0
Total Split (%)	62.9%		2.9%	62.9%	37.1%	37.1%
Maximum Green (s)	37.0		37.0	37.0	20.0	20.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	3.0		3.0	3.0	2.0	2.0
Lost Time Adjust (s)	-1.0		0.0	-1.0	-1.0	-1.0
Total Lost Time (s)	6.0			6.0	5.0	5.0
Lead/Lag	0.0			0.0	0.0	0.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	C-Max	C-	-Max	C-Max	None	None
Walk Time (s)	7.0	U-	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	14.0		14.0	14.0	13.0	13.0
Pedestrian Calls (#/hr)	100		7	7	16	16
Act Effct Green (s)	38.0			38.0	21.0	21.0
Actuated g/C Ratio	0.54			0.54	0.30	0.30
v/c Ratio	0.96			0.54	0.83	0.60
Control Delay	38.1			41.3	42.4	27.6
Queue Delay	0.0			0.0	0.0	0.0
Total Delay	38.1			41.3	42.4	27.6
LOS	J0.1			41.3 D	42.4 D	21.0 C
Approach Delay	38.1			41.3	36.8	U
Approach LOS	J0.1			41.3 D	30.0 D	
Approacti LOS	U			U	ט	
Intersection Summary						
Area Type:	CBD					
Cycle Length: 70						
Actuated Cycle Length: 7	70					
Offset: 6 (9%), Reference	ed to phase 2:E	BT and 6:W	/BTL,	Start of 1	st Green	
Natural Cycle: 90	·					
Control Type: Actuated-0	Coordinated					
Maximum v/c Ratio: 0.97						
Intersection Signal Delay				lr	ntersection	n LOS: D
Intersection Capacity Uti						of Service
Analysis Period (min) 15						
,						
Splits and Phases: 19	12: Atlantic Ave	& King St				
•						
→ø2 (R)						

1912: Atlantic Ave & King St

09/30/2021

	-	•	1	
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	895	911	343	209
v/c Ratio	0.96	0.97	0.83	0.60
Control Delay	38.1	41.3	42.4	27.6
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	38.1	41.3	42.4	27.6
Queue Length 50th (m)	52.6	55.7	41.5	21.0
Queue Length 95th (m)	#88.5	#91.1	#76.6	39.3
Internal Link Dist (m)	167.3	294.4	174.0	
Turn Bay Length (m)			30.0	
Base Capacity (vph)	935	938	414	346
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.96	0.97	0.83	0.60

HCM Signalized Intersection Capacity Analysis 1912: Atlantic Ave & King St

09/30/2021

Movement
Lane Configurations Traffic Volume (vph) 697 73 4 779 295 180 Future Volume (vph) 697 73 4 779 295 180 Future Volume (vph) 697 73 4 779 295 180 Future Volume (vph) 1250 1250 1250 1250 1250 1250 1900 1900 1900 Lane Width 3.5 3.5 3.5 3.5 3.5 3.0 3.0 3.0 Total Lost time (s) 6.0 6.0 6.0 5.0 5.0 Lane Util. Factor 0.95 1.00 1.00 1.00 0.96 Fipb, ped/bikes 1.00 1.00 1.00 0.95 1.00 Frt 0.99 1.00 1.00 0.95 1.00 Frt 0.99 1.00 1.00 0.95 1.00 Fit Portocted 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1703 1819 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
Traffic Volume (vph) 697 73 4 779 295 180 Future Volume (vph) 697 73 4 779 295 180 Ideal Flow (vphph) 1250 1250 1250 1250 1900 1900 Lane Width 3.5 3.5 3.5 3.5 3.0 3.0 Total Lost time (s) 6.0 6.0 5.0 5.0 Lane Width 3.5 3.5 3.5 3.5 3.0 3.0 Total Lost time (s) 6.0 6.0 5.0 5.0 Lane Util, Factor 0.95 0.95 1.00 1.00 0.96 Fripb, ped/bikes 1.00 1.00 0.95 1.00 Frpb, ped/bikes 1.00 1.00 0.95 1.00 Frit 0.99 1.00 1.00 0.95 1.00 Fit Protected 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1703 1819 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1819 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 Adj. Flow (vph) 810 85 5 906 343 209 RTOR Reduction (vph) 884 0 0 911 343 196 Confl. Bikes (#/hr) 5 Heavy Vehicles (%) 11% 6% 100% 10% 4% 17% Bus Blockages (#/hr) 24 24 24 24 0 0 Confl. Bikes (#/hr) 24 24 24 24 0 0 Tum Type NA Perm NA Perm Perm Pertotected Phases 6 8 8 Actuated Green, G (s) 37.0 3.0 3.0 3.0 Clearance Time (s) 7.0 7.0 6.0 6.0
Future Volume (vph) 697 73 4 779 295 180
Ideal Flow (vphpt)
Lane Width 3.5 3.5 3.5 3.5 3.0 3.0 Total Lost time (s) 6.0 6.0 5.0 5.0 5.0 Lane Util. Factor 0.95 0.95 1.00 1.00 0.96 Fipb, ped/bikes 0.95 1.00 1.00 0.96 Fipb, ped/bikes 1.00 1.00 0.95 1.00 1.00 0.96 Fipb, ped/bikes 1.00 1.00 0.95 1.00 1.00 0.95 1.00 Fit 0.99 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1703 1819 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (prom) 1703 1819 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (prom) 1703 1729 1383 1110 Fit Permitted 1.00 0.95 0.95 0.95 1.00 Satd. Flow (prom) 1703 1729 1383 1110 Satd. Flow (prom) 1703 Satd. Flow (prom) 1704 Satd. Satd. Flow (prom) 1704 Satd. Satd. Flow (prom) 1705 Satd. Flow (
Total Lost time (s) 6.0 6.0 5.0 5.0 5.0 Lane Util. Factor 0.95 0.95 1.00 1.00 0.96 Firpb, ped/bikes 0.95 1.00 1.00 0.96 Firpb, ped/bikes 1.00 1.00 0.95 1.00 Fit 0.99 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1703 1819 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (prot) 1703 1879 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Fit Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 0.86 Adj. Flow (vph) 810 85 5 906 343 209 RTOR Reduction (vph) 11 0 0 0 0 13 Lane Group Flow (vph) 884 0 0 911 343 196 Coordi. Peds. (#hr) 387 387 49 30 Confl. Peds. (#hr) 5 Heavy Vehicles (%) 11% 6% 100% 10% 4% 17% Bus Blockages (#hr) 24 24 24 24 0 0 DITUM Type NA Perm NA Perm Perm Perm Perm Perm Perm Perm Perm
Lane Util. Factor 0.95 0.95 1.00 1.00 Frpb, ped/bikes 0.95 1.00 1.00 0.96 Flpb, ped/bikes 1.00 1.00 0.95 1.00 Frt 0.99 1.00 1.00 0.85 Flt Protected 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1703 1819 1383 1110 Flt Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Flt Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Flt Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Flt Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Flt Permitted 1.00 0.95 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Flt Permitted 1.00 0.05 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Flt Permitted 1.00 0.05 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
Frpb, ped/bikes
Fipb, ped/bikes
Fit Protected 1.00 1.00 0.85 Fit Protected 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1703 1819 1383 1110 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 Adj. Flow (vph) 810 85 5 906 343 209 RTOR Reduction (vph) 11 0 0 0 0 0 13 Lane Group Flow (vph) 884 0 0 911 343 196 Confl. Peds. (#hr) 387 387 49 30 Confl. Bikes (#hr) 5 Heavy Vehicles (%) 11% 6% 100% 10% 4% 17% Bus Blockages (#hr) 24 24 24 24 0 0 Turn Type NA Perm NA Perm Perm Protected Phases 2 6 Permitted Phases 6 8 8 8 Actuated Green, G (s) 37.0 37.0 20.0 20.0 Effective Green, g (s) 38.0 38.0 21.0 21.0 Actuated g/C Ratio 0.54 0.54 0.30 0.30 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 v/s Ratio Perm Co.53 c0.25 0.18 v/s Ratio Perm Co.54 c0.54 0.50 D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Fit Protected
Satd. Flow (prot) 1703 1819 1383 1110
Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 1703 1729 1383 1110 Peak-hour factor, PHF 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
Satd. Flow (perm) 1703 1729 1383 1110
Peak-hour factor, PHF 0.86 0.96 0.96 0.96 0.96 0.97 0.83 0.96 0.97 0.83 0.59 0.96 0.97 0.83 0.59
Adj. Flow (vph) 810 85 5 906 343 209 RTOR Reduction (vph) 11 0 0 0 0 13 Lane Group Flow (vph) 884 0 0 9911 343 196 Confl. Peds. (#hr) 387 387 49 30 Confl. Bikes (#hr) 5 Heavy Vehicles (%) 11% 6% 100% 10% 4% 17% Bus Blockages (#hr) 24 24 24 24 0 0 0 Turn Type NA Perm NA Perm Perm Protected Phases 2 6 8 8 Actuated Green, G (s) 37,0 37,0 20,0 20,0 Effective Green, g (s) 38.0 38.0 21.0 21.0 Actuated g/C Ratio 0.54 0.54 0.30 0.30 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 v/s Ratio Prot 0.52 v/s Ratio Prot 0.52 v/s Ratio Deta 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 Incremental Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Intersection Summary HCM 2000 Control Delay HCM 2000 Control Delay HCM 2000 Level of Service D
RTOR Reduction (vph)
Lane Group Flow (vph) 884 0 0 911 343 196 Confl. Peds. (#hr) 5 Heavy Vehicles (%) 11% 6% 100% 10% 4% 17% Bus Blockages (#hr) 24 24 24 24 0 0 Turn Type NA Perm NA Perm Perm Perrected Phases 2 Fermitted Phases 6 8 8 8 Actuated Green, G (s) 37.0 37.0 20.0 20.0 Effective Green, g (s) 38.0 38.0 21.0 21.0 Actuated g/C Ratio 0.54 0.54 0.30 0.30 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 V/s Ratio Prot 0.52 V/s Ratio Perm Cation 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Interesection Summary HCM 2000 Control Delay HCM 2000 Control Delay HCM 2000 Control Delay HCM 2000 Level of Service D
Confl. Peds. (#/hr)
Confi. Bikes (#hr) Heavy Vehicles (%) Bus Blockages (#hr) 24 24 24 24 24 20 0 0 Turn Type NA Perm NA Perm NA Perm NA Perm Perm Protected Phases 2 6 Permitted Phases 6 8 8 Actuated Green, G (s) 37.0 37.0 20.0 20.0 Effective Green, g (s) 38.0 38.0 21.0 21.0 Actuated g/C Ratio 0.54 0.54 0.54 0.54 0.30 0.30 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 v/s Ratio Prot v/s Ratio Perm c0.53 c0.25 0.18 v/c Ratio 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.0
Heavy Vehicles (%)
Bus Blockages (#lhr)
Turn Type
Protected Phases 2 6 8 Permitted Phases 6 8 8 Actuated Green, G (s) 37.0 37.0 20.0 20.0 Effective Green, g (s) 38.0 38.0 21.0 21.0 Actuated g/C Ratio 0.54 0.54 0.30 0.30 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 Wes Ratio Prot 0.52 Ws Ratio Perm 0.52 Vs Ratio Perm 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach LOS D D C Intersection Summary HCM 2000 Control Delay B 35.8 HCM 2000 Level of Service D
Permitted Phases 6 8 8 8 Actuated Green, G (s) 37.0 37.0 20.0 20.0 Effective Green, g (s) 38.0 38.0 21.0 21.0 Actuated g/C Ratio 0.54 0.54 0.30 0.30 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 W/s Ratio Prot 0.52 W/s Ratio Perm c0.53 c0.25 0.18 W/c Ratio 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach LOS D D C Intersection Summary HCM 2000 Control Delay B S B HCM 2000 Level of Service D
Actuated Green, G (s) 37.0 37.0 20.0 20.0 Effective Green, g (s) 38.0 38.0 21.0 21.0 Actuated g/C Ratio 0.54 0.54 0.30 0.30 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 V/S Ratio Prot 0.52 V/S Ratio Prot 0.52 V/S Ratio Prot 0.52 V/S Ratio Prot 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach LOS D C C Intersection Summary HCM 2000 Centrol Delay B C C Intersection Summary
Effective Green, g (s) 38.0 38.0 21.0 21.0 Actuated g/C Ratio 0.54 0.54 0.30 0.30 0.30 0.54 0.54 0.30 0.30 0.30 0.54 0.54 0.30 0.30 0.30 0.54 0.54 0.30 0.30 0.30 0.54 0.54 0.30 0.30 0.30 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.5
Actuated g/C Ratio 0.54 0.54 0.30 0.30 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Vehicle Extension (s) 924 938 414 333 v/s Ratio Prot 0.52 v/s Ratio Perm 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach LOS D D C Intersection Summary HCM 2000 Control Delay S 7.0 5.8 PCM 2000 Level of Service D Intersection Summary
Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 v/s Ratio Prot 0.52 v/s Ratio Perm c0.53 c0.25 0.18 v/c Ratio 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 924 938 414 333 v/s Ratio Prot 0.52 v/s Ratio Perm c0.53 c0.25 0.18 v/c Ratio 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Lane Grp Cap (vph) 924 938 414 333 w/s Ratio Prot 0.52 v/s Ratio Perm 0.52 0.53 0.25 0.18 v/c Ratio 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
v/s Ratio Prot 0.52 v/s Ratio Perm c0.53 c0.25 0.18 v/s Ratio Perm c0.53 c0.25 0.18 v/s Ratio 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
v/s Ratio Perm c0.53 c0.25 0.18 v/c Ratio 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
v/c Ratio 0.96 0.97 0.83 0.59 Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Uniform Delay, d1 15.2 15.5 22.8 20.8 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Incremental Delay, d2 20.7 23.2 12.8 2.6 Delay (s) 35.9 38.7 35.6 23.5 Level of Service
Delay (s) 35.9 38.7 35.6 23.5 Level of Service D D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Level of Service D D D C Approach Delay (s) 35.9 38.7 31.0 Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Approach Delay (s) 35.9 38.7 31.0 Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Approach LOS D D C Intersection Summary HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
HCM 2000 Control Delay 35.8 HCM 2000 Level of Service D
Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0
Intersection Capacity Utilization 68.4% ICU Level of Service C
Analysis Period (min) 15
c Critical Lane Group

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	→	←	•	-	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	414	↑ ₽	וטוו	₩.	ODIN
Traffic Volume (vph)	0	€1 T 852	T → 628	79	144	42
	0	852	628	79 79	144	42
Future Volume (vph)						
Ideal Flow (vphpl)	1250	1250	1250 0.95	1250 0.95	1900	1900
Lane Util. Factor	0.95	0.95		0.95	1.00	1.00
Ped Bike Factor			0.99		0.99	
Frt			0.983		0.969	
Flt Protected	_				0.963	_
Satd. Flow (prot)	0	1881	1821	0	1460	0
FIt Permitted					0.963	
Satd. Flow (perm)	0	1881	1821	0	1460	0
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)			35		17	
Link Speed (k/h)		50	50		50	
Link Distance (m)		316.7	191.3		100.8	
Travel Time (s)		22.8	13.8		7.3	
Confl. Peds. (#/hr)	40			40		23
Confl. Bikes (#/hr)				1		
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	0.00	7%	8%	3%	3%	21%
Bus Blockages (#/hr)	24	24	24	24	0	0
	0		714	90	164	48
Adj. Flow (vph)	0	968	/ 14	90	104	48
Shared Lane Traffic (%)	^	000	00.4	•	040	•
Lane Group Flow (vph)	0	968	804	0	212	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)		0.0	0.0		3.5	
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		4.8	4.8		4.8	
Two way Left Turn Lane						
Headway Factor	1.92	2.03	2.03	1.92	1.16	1.16
Turning Speed (k/h)	24	2.00		14	24	14
Number of Detectors	1	2	2	17	1	
Detector Template	Left	Thru	Thru		Left	
Leading Detector (m)	6.1	30.5	30.5		6.1	
			0.0		0.0	
Trailing Detector (m)	0.0	0.0				
Detector 1 Position(m)	0.0	0.0	0.0		0.0	
Detector 1 Size(m)	6.1	1.8	1.8		6.1	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	
Detector 2 Position(m)		28.7	28.7			
Detector 2 Size(m)		1.8	1.8			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel		JI. LX	JI-LX			
Detector 2 Extend (s)		0.0	0.0			
(/		NA	NA		Perm	
Turn Type		ΝA	INA		Perm	

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 43 Lanes, Volumes, Timings 2081: King St & Joe Shuster Way

Lane Group EBL EBT WBT WBR SBL SBR
Permitted Phases 2 8 Detector Phase 2 2 6 8 Switch Phase 8 8 8 8 Minimum Initial (s) 20.0 20.0 20.0 18.0 Minimum Split (s) 26.0 26.0 26.0 23.0 Total Split (s) 57.0 57.0 57.0 23.0 Total Split (%) 71.3% 71.3% 71.3% 28.8% Maximum Green (s) 51.0 51.0 51.0 18.0 Yellow Time (s) 4.0 4.0 4.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Detector Phase 2 2 6 8 Switch Phase Minimum Initial (s) 20.0 20.0 20.0 18.0 Minimum Split (s) 26.0 26.0 26.0 23.0 Total Split (s) 57.0 57.0 57.0 23.0 Total Split (%) 71.3% 71.3% 28.8% Maximum Green (s) 51.0 51.0 51.0 18.0 Yellow Time (s) 4.0 4.0 3.0 All-Red Time (s) 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Switch Phase 30.0 20.0 20.0 18.0 Minimum Initial (s) 20.0 26.0 26.0 23.0 Total Split (s) 57.0 57.0 57.0 23.0 Total Split (%) 71.3% 71.3% 71.3% 28.8% Maximum Green (s) 51.0 51.0 51.0 18.0 Yellow Time (s) 4.0 4.0 3.0 All-Red Time (s) 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0 4.0 4.0
Minimum Initial (s) 20.0 20.0 20.0 18.0 Minimum Spiti (s) 26.0 26.0 26.0 23.0 Total Spiti (s) 57.0 57.0 57.0 23.0 Total Spiti (%) 71.3% 71.3% 71.3% 28.8% Maximum Green (s) 51.0 51.0 51.0 18.0 Yellow Time (s) 4.0 4.0 4.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Minimum Split (s) 26.0 26.0 26.0 23.0 Total Split (s) 57.0 57.0 57.0 23.0 Total Split (%) 71.3% 71.3% 71.3% 28.8% Maximum Green (s) 51.0 51.0 51.0 18.0 Yellow Time (s) 4.0 4.0 4.0 3.0 All-Red Time (s) 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Total Split (s) 57.0 57.0 57.0 23.0 Total Split (%) 71.3% 71.3% 28.8% Maximum Green (s) 51.0 51.0 51.0 Yellow Time (s) 4.0 4.0 4.0 4.1-Red Time (s) 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Total Split (%) 71.3% 71.3% 28.8% Maximum Green (s) 51.0 51.0 51.0 18.0 Yellow Time (s) 4.0 4.0 3.0 All-Red Time (s) 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Maximum Green (s) 51.0 51.0 51.0 18.0 Yellow Time (s) 4.0 4.0 4.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Yellow Time (s) 4.0 4.0 4.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Lost Time Adjust (s) -1.0 -1.0 -1.0 Total Lost Time (s) 5.0 5.0 4.0
Total Lost Time (s) 5.0 5.0 4.0
Lead/Lag
Lead-Lag Optimize?
Vehicle Extension (s) 3.0 3.0 3.0 3.0
Recall Mode C-Max C-Max None None
Walk Time (s) 7.0 7.0 7.0 7.0
Flash Dont Walk (s) 13.0 13.0 11.0
Pedestrian Calls (#/hr) 100 100 13 7
Act Effct Green (s) 52.0 52.0 19.0
Actuated g/C Ratio 0.65 0.65 0.24
v/c Ratio 0.79 0.67 0.59
Control Delay 16.1 11.8 32.5
Queue Delay 0.0 0.0 0.0
Total Delay 16.1 11.8 32.5
LOS B B C
Approach Delay 16.1 11.8 32.5
Approach LOS B B C
Intersection Summary
Area Type: CBD
Cycle Length: 80
Actuated Cycle Length: 80
Offset: 1 (1%), Referenced to phase 2:EBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 16.1 Intersection LOS: B
Intersection Capacity Utilization 62.3% ICU Level of Service B
Analysis Period (min) 15

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

2081: King St & Joe Shuster Way

09/30/2021

	-	←	-
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	968	804	212
v/c Ratio	0.79	0.67	0.59
Control Delay	16.1	11.8	32.5
Queue Delay	0.0	0.0	0.0
Total Delay	16.1	11.8	32.5
Queue Length 50th (m)	49.4	33.2	26.3
Queue Length 95th (m)	m34.1	49.9	46.3
Internal Link Dist (m)	292.7	167.3	76.8
Turn Bay Length (m)			
Base Capacity (vph)	1222	1195	359
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.79	0.67	0.59
Into ti O			

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis

2081: King St & Joe Shuster Way

09/30/2021

	ၨ	-	←	•	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		414	↑ 1>		W		
Traffic Volume (vph)	0	852	628	79	144	42	
Future Volume (vph)	0	852	628	79	144	42	
Ideal Flow (vphpl)	1250	1250	1250	1250	1900	1900	
Total Lost time (s)	.200	5.0	5.0	1200	4.0	1000	
Lane Util. Factor		0.95	0.95		1.00		
Frpb, ped/bikes		1.00	0.99		0.99		
Flpb, ped/bikes		1.00	1.00		1.00		
Frt		1.00	0.98		0.97		
Flt Protected		1.00	1.00		0.96		
Satd. Flow (prot)		1881	1821		1460		
Flt Permitted		1.00	1.00		0.96		
Satd. Flow (perm)		1881	1821		1460		
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	
Adj. Flow (vph)	0.00	968	714	90	164	48	
RTOR Reduction (vph)	0	0	12	0	13	0	
Lane Group Flow (vph)	0	968	792	0	199	0	
Confl. Peds. (#/hr)	40			40		23	
Confl. Bikes (#/hr)				1			
Heavy Vehicles (%)	0%	7%	8%	3%	3%	21%	
Bus Blockages (#/hr)	24	24	24	24	0	0	
Turn Type		NA	NA		Perm		
Protected Phases		2	6				
Permitted Phases	2				8		
Actuated Green, G (s)		51.0	51.0		18.0		
Effective Green, q (s)		52.0	52.0		19.0		
Actuated g/C Ratio		0.65	0.65		0.24		
Clearance Time (s)		6.0	6.0		5.0		
Vehicle Extension (s)		3.0	3.0		3.0		
Lane Grp Cap (vph)		1222	1183		346		
v/s Ratio Prot		c0.51	0.43				
v/s Ratio Perm					c0.14		
v/c Ratio		0.79	0.67		0.58		
Uniform Delay, d1		10.1	8.7		26.9		
Progression Factor		1.42	1.00		1.00		
Incremental Delay, d2		0.5	1.5		2.3		
Delay (s)		14.9	10.1		29.2		
Level of Service		В	В		С		
Approach Delay (s)		14.9	10.1		29.2		
Approach LOS		В	В		С		
Intersection Summary							
HCM 2000 Control Delay			14.5	Н	CM 2000	Level of Service	В
HCM 2000 Volume to Capacity	ratio		0.74	110	JIVI 2000	LOTOI OF OCTVICE	
Actuated Cycle Length (s)			80.0	Q ₁	um of lost	time (s)	10.0
	1					(-)	
Intersection Capacity Utilization Analysis Period (min)	1		62.3%		U Level o	(-)	В

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	•	†	1	-	Į.
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	1		7	*	†
Traffic Volume (vph)	14	61	443	30	146	677
Future Volume (vph)	14	61	443	30	146	677
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.0	3.5	3.0	3.0	3.5
Storage Length (m)	30.0	0.0		15.0	30.0	
Storage Lanes	1	1		1	1	
Taper Length (m)	7.5				7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor				0.97	1.00	
Frt		0.850		0.850	1.00	
Flt Protected	0.950	0.000		0.000	0.950	
Satd. Flow (prot)	1560	1113	1807	1370	1276	1807
Flt Permitted	0.950	1110	1001	1370	0.403	1001
	1560	1113	1807	1329	540	1807
Satd. Flow (perm)	0001		1807		540	1807
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	22	73	20	16		20
Link Speed (k/h)	30		30			30
Link Distance (m)	148.7		265.9			191.3
Travel Time (s)	17.8		31.9	_	_	23.0
Confl. Peds. (#/hr)	0.0:		00:	7	7	0.01
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	8%	30%	4%	10%	32%	4%
Bus Blockages (#/hr)	0	10	0	0	0	0
Adj. Flow (vph)	17	73	527	36	174	806
Shared Lane Traffic (%)						
Lane Group Flow (vph)	17	73	527	36	174	806
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.0		3.0			3.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.09	1.15	1.01	1.09	1.09	1.01
Turning Speed (k/h)	24	14		14	24	
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (m)	6.1	6.1	30.5	6.1	6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	6.1	6.1	1.8	6.1	6.1	1.8
Detector 1 Size(m)						
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)			28.7			28.7
Detector 2 Size(m)			1.8			1.8
Detector 2 Type			CI+Ex			CI+Ex

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 47

HDR Corporation

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

Page 48

	•	•	†	/	-	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Detector 2 Channel							
Detector 2 Extend (s)			0.0			0.0	
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA	
Protected Phases		1	2		1	6	
Permitted Phases	8	8		2	6		
Detector Phase	8	1	2	2	1	6	
Switch Phase							
Minimum Initial (s)	21.0	6.0	27.0	27.0	6.0	27.0	
Minimum Split (s)	26.0	10.0	34.0	34.0	10.0	34.0	
Total Split (s)	26.0	14.0	40.0	40.0	14.0	54.0	
Total Split (%)	32.5%	17.5%	50.0%	50.0%	17.5%	67.5%	
Maximum Green (s)	21.0	10.0	33.0	33.0	10.0	47.0	
Yellow Time (s)	3.0	3.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	2.0	1.0	3.0	3.0	1.0	3.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	3.0	6.0	6.0	3.0	6.0	
Lead/Lag	1.0	Lead	Lag	Lag	Lead	0.0	
Lead-Lag Optimize?		Loud	Lug	Lug	Loud		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	C-Max	C-Max	None	C-Max	
Walk Time (s)	7.0	INOTIC	7.0	7.0	140110	0.0	
Flash Dont Walk (s)	14.0		20.0	20.0		0.0	
Pedestrian Calls (#/hr)	0		20.0	20.0		0.0	
Act Effct Green (s)	22.0	13.3	57.7	57.7	71.8	73.6	
Actuated g/C Ratio	0.28	0.17	0.72	0.72	0.90	0.92	
v/c Ratio	0.20	0.30	0.40	0.04	0.31	0.48	
Control Delay	21.7	8.2	8.7	5.8	2.5	2.4	
Queue Delay	0.0	0.2	0.0	0.0	0.0	0.0	
Total Delay	21.7	8.2	8.7	5.8	2.5	2.4	
LOS	21.7 C	0.2 A	Α.	J.0	2.5 A	2.4 A	
Approach Delay	10.8		8.5			2.4	
Approach LOS	10.0 B		0.5 A			2.4 A	
Apploach Loo	D		^			^	
Intersection Summary							
	Other						
Cycle Length: 80							
Actuated Cycle Length: 80							
Offset: 15 (19%), Reference	ed to phase	2:NBT a	nd 6:SBT	L, Start of	1st Gree	n	
Natural Cycle: 70							
Control Type: Actuated-Coo	ordinated						
Maximum v/c Ratio: 0.48							
Intersection Signal Delay: 5	.0			lr	ntersectio	n LOS: A	
Intersection Capacity Utiliza	ation 61.5%			IC	CU Level	of Service E	3
Analysis Period (min) 15							
Splits and Phases: 2134:	British Col	ombia Ro	I/Dufferin	St & Sasl	katchewa	n Rd	
12-	A	01110101110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01 0 000	tatorio ira		
Ø1	Tø2 (R)						
14 s 40	S						
. A							
▼ Ø6 (R)							

2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	*	†	~	-	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	17	73	527	36	174	806
v/c Ratio	0.04	0.30	0.40	0.04	0.31	0.48
Control Delay	21.7	8.2	8.7	5.8	2.5	2.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.7	8.2	8.7	5.8	2.5	2.4
Queue Length 50th (m)	1.9	0.0	15.7	0.4	0.0	0.0
Queue Length 95th (m)	5.9	5.6	86.8	6.3	11.0	41.7
Internal Link Dist (m)	124.7		241.9			167.3
Turn Bay Length (m)	30.0			15.0	30.0	
Base Capacity (vph)	429	284	1302	962	585	1662
Starvation Cap Reductn	0	0	0	0	0	4
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.04	0.26	0.40	0.04	0.30	0.49
Intersection Cummens						

HCM Signalized Intersection Capacity Analysis 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	•	†	<i>></i>	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*	7		7	*	†	
Traffic Volume (vph)	14	61	443	30	146	677	
Future Volume (vph)	14	61	443	30	146	677	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	3.0	3.0	3.5	3.0	3.0	3.5	
Total Lost time (s)	4.0	3.0	6.0	6.0	3.0	6.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	1.00	0.97	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.85	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1560	1113	1807	1329	1274	1807	
FIt Permitted	0.95	1.00	1.00	1.00	0.40	1.00	
Satd. Flow (perm)	1560	1113	1807	1329	541	1807	
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	
Adj. Flow (vph)	17	73	527	36	174	806	
RTOR Reduction (vph)	0	61	0	5	0	0	
Lane Group Flow (vph)	17	12	527	31	174	806	
Confl. Peds. (#/hr)				7	7		
Heavy Vehicles (%)	8%	30%	4%	10%	32%	4%	
Bus Blockages (#/hr)	0	10	0	0	0	0	
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA	
Protected Phases		1	2		1	6	
Permitted Phases	8	8		2	6		
Actuated Green, G (s)	4.2	11.3	52.7	52.7	63.8	63.8	
Effective Green, g (s)	5.2	13.3	53.7	53.7	64.8	64.8	
Actuated g/C Ratio	0.07	0.17	0.67	0.67	0.81	0.81	
Clearance Time (s)	5.0	4.0	7.0	7.0	4.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	101	185	1212	892	512	1463	
v/s Ratio Prot		0.01	0.29		0.03	c0.45	
v/s Ratio Perm	c0.01	0.00		0.02	0.24		
v/c Ratio	0.17	0.07	0.43	0.03	0.34	0.55	
Uniform Delay, d1	35.4	28.1	6.1	4.4	2.2	2.6	
Progression Factor	1.00	1.00	1.00	1.00	0.54	0.39	
Incremental Delay, d2	0.8	0.2	1.1	0.1	0.3	1.3	
Delay (s)	36.1	28.3	7.2	4.5	1.5	2.3	
Level of Service	D	С	Α	Α	Α	Α	
Approach Delay (s)	29.8		7.1			2.2	
Approach LOS	С		Α			Α	
ntersection Summary							
HCM 2000 Control Delay			5.4	Н	CM 2000	Level of Servi	ce A
HCM 2000 Volume to Capaci	ty ratio		0.55				
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)	14.0
Intersection Capacity Utilization	on		61.5%		CU Level o		В
Analysis Period (min)			15				
Critical Lane Group							

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lane Group

Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Ideal Flow (vphpl)

Lane Util. Factor

Ped Bike Factor

Satd. Flow (prot)

Satd. Flow (perm)

Right Turn on Red

Satd, Flow (RTOR)

Link Speed (k/h)

Link Distance (m)

Confl. Peds. (#/hr)

Confl. Bikes (#/hr)

Peak Hour Factor

Adj. Flow (vph)

Lane Alignment

Median Width(m)

Headway Factor

Turning Speed (k/h)

Number of Detectors

Leading Detector (m)

Trailing Detector (m)

Detector 1 Size(m)

Detector 1 Channel

Detector 1 Extend (s)

Detector 1 Queue (s)

Detector 1 Delay (s)

Detector 2 Size(m)

Detector 2 Channel
Detector 2 Extend (s)

Protected Phases

Detector 2 Type

Turn Type

Detector 2 Position(m)

Detector 1 Type

Detector 1 Position(m)

Detector Template

Crosswalk Width(m)

Two way Left Turn Lane

Link Offset(m)

Bus Blockages (#/hr)

Shared Lane Traffic (%)

Lane Group Flow (vph)

Enter Blocked Intersection

Travel Time (s)

FIt Protected

Flt Permitted

EBL

16

1900 1900

1.00

878

0.90

18

0

Left

1.01

24

Left

6.1 30.5

0.0

0.0

6.1

0.0

0.0

→ ← **♦ ↓ ↓**

14

1900 1900

1.00 1.00

SBL

75 104

0.47

0.921

0.980

0.980

774

50

54.1

3.9

757

0.90

83 116

199

Left Right

3.5

0.0

4.8

Left

6.1

0.0

0.0

6.1

0.0

0.0

0.0

Perm

CI+Ex

0 1038

0

Yes

878

0.90

0

16

0

No

14 24

1900

1.00

0

0

Yes

853

0.90

0

14

EBT WBT

122

1900

1.00

0.986

1691

1691

14

40

198.4

0.90

0

136

No

Left Right

0.0

0.0

1.01

Thru

30.5

0.0

0.0

1.8

0.0

0.0

1.8 1.8 CI+Ex CI+Ex

0.0

NA

6

37

1.00

0.84

0.985

0.915

87.6

7.9 17.9

0.90

41

59 152

Left

0.0

0.0

4.8 4.8

1.09

Thru

0.0

0.0

1.8

0.0

0.0

28.7 28.7

0.0

NA

2

CI+Ex CI+Ex CI+Ex

0 1713

0 1338

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 51 Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 52

9023: New Liberty St & Atlantic Ave

09/30/2021

	-	•	>
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	59	152	199
v/c Ratio	0.08	0.17	0.75
Control Delay	10.2	9.7	32.2
Queue Delay	0.0	0.0	0.0
Total Delay	10.2	9.7	32.2
Queue Length 50th (m)	3.0	7.3	14.0
Queue Length 95th (m)	8.9	17.6	#37.8
Internal Link Dist (m)	63.6	174.4	30.1
Turn Bay Length (m)			
Base Capacity (vph)	715	910	325
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.08	0.17	0.61

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 9023: New Liberty St & Atlantic Ave

	۶	→	←	•	>	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		4	<u></u>	· · · · · ·	W	02.1		
Traffic Volume (vph)	16	37	122	14	75	104		
Future Volume (vph)	16	37	122	14	75	104		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	1000	5.0	5.0	1000	5.0	1000		
Lane Util. Factor		1.00	1.00		1.00			
Frpb, ped/bikes		1.00	0.93		0.62			
Flpb, ped/bikes		0.84	1.00		0.75			
Frt		1.00	0.99		0.73			
Flt Protected		0.98	1.00		0.98			
Satd. Flow (prot)		1440	1691		774			
Flt Permitted		0.92	1.00		0.98			
Satd. Flow (perm)		1339	1691		774			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
	18	0.90 41	136	16	83	116		
Adj. Flow (vph) RTOR Reduction (vph)	0	0	7	0	1	0		
	0	59	145	0	198	0		
Lane Group Flow (vph) Confl. Peds. (#/hr)	878	59	140	878	757	853		
Confl. Bikes (#/hr)	010			8	101	000		
	0	14	0	0	0	0		
Bus Blockages (#/hr)			NA	U		U		
Turn Type	Perm	NA			Perm			
Protected Phases	_	2	6					
Permitted Phases	2	00.5	00.5		4			
Actuated Green, G (s)		23.5	23.5		14.5			
Effective Green, g (s)		24.5	24.5		15.5			
Actuated g/C Ratio		0.49	0.49		0.31			
Clearance Time (s)		6.0	6.0		6.0			
Vehicle Extension (s)		3.0	3.0		3.0			
Lane Grp Cap (vph)		656	828		239			
v/s Ratio Prot		0.07	c0.09					
v/s Ratio Perm		0.04			c0.26			
v/c Ratio		0.09	0.17		0.83			
Uniform Delay, d1		6.8	7.1		16.0			
Progression Factor		1.00	1.00		1.00			
Incremental Delay, d2		0.3	0.5		20.6			
Delay (s)		7.1	7.6		36.6			
Level of Service		A	A		D			
Approach Delay (s)		7.1	7.6		36.6			
Approach LOS		Α	Α		D			
ntersection Summary								
HCM 2000 Control Delay			21.6	H	CM 2000	Level of Service)	С
HCM 2000 Volume to Capa	city ratio		0.44					
Actuated Cycle Length (s)			50.0	Sı	um of lost	time (s)	11	.0
Intersection Capacity Utiliza	ation		41.7%		U Level c			Α
Analysis Period (min)			15					
c Critical Lane Group								

Lanes, Volumes, Timings 9024: Dufferin St & New Liberty St

09/30/2021

	•	•	†	1	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	7	1		*	<u> </u>
Traffic Volume (vph)	173	56	392	128	21	669
Future Volume (vph)	173	56	392	128	21	669
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0	0.0	1000	0.0	0.0	1000
Storage Lanes	13.0	1		0.0	1	
	7.5			U	7.5	
Taper Length (m) Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.62	1.00	1.00	1.00	1.00
Frt		0.850	0.967			
	0.050	0.830	0.967		0.050	
Fit Protected	0.950	1500	1704	0	0.950	1040
Satd. Flow (prot)	1750	1566	1781	0	1750	1842
Flt Permitted	0.950		4707	_	0.393	10.15
Satd. Flow (perm)	1750	971	1781	0	724	1842
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		62	40			
Link Speed (k/h)	40		30			30
Link Distance (m)	107.6		191.3			74.7
Travel Time (s)	9.7		23.0			9.0
Confl. Peds. (#/hr)		163				
Confl. Bikes (#/hr)		5				
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	192	62	436	142	23	743
Shared Lane Traffic (%)						
Lane Group Flow (vph)	192	62	578	0	23	743
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5	ragnt	3.5	rugill	Loit	3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
(/	4.8		4.0			4.8
Two way Left Turn Lane	4.04	1.04	4.04	4.04	4.04	4.04
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	14		14	24	
Number of Detectors	1	1	2		1	2
Detector Template	Left	Right	Thru		Left	Thru
Leading Detector (m)	6.1	6.1	30.5		6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	6.1	6.1	1.8		6.1	1.8
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel					-	-
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	0.0
Detector 2 Position(m)	0.0	0.0	28.7		0.0	28.7
Detector 2 Size(m)			1.8			1.8
			CI+Ex			
Detector 2 Type			UI+EX			CI+Ex
Detector 2 Channel			0.0			0.0
Detector 2 Extend (s)			0.0			0.0

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 55 Lanes, Volumes, Timings

9024: Dufferin St & New Liberty St

09/30/2021

rm Type		€	•	†		-	ţ	
Image	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Contected Phases 2 6 6	Turn Type	Perm	Perm	NA		Perm	NA	
######################################	Protected Phases							
etector Phase witch Phase witc	Permitted Phases	8	8			6		
witch Phase inimum Initial (s) 7.0 7.0 7.0 7.0 7.0 7.0 inimum Split (s) 24.0 24.0 24.0 24.0 24.0 tal Split (s) 24.0 24.0 56.0 56.0 56.0 56.0 tal Split (w) 30.0% 30.0% 70.0% 70.0% 70.0% aximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 eximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 eximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 eximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 eximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 eximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 eximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 eximum Green (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 exit Line (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 exall Mode None C-Max C-Max C-Max C-Max C-Max C-Max C-Max G-Max	Detector Phase			2			6	
inimum Initial (s) 7.0 7.0 7.0 7.0 7.0 inimum Split (s) 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	Switch Phase							
inimum Split (s)	Minimum Initial (s)	7.0	7.0	7.0		7.0	7.0	
total Split (s) 24.0 24.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56	Minimum Split (s)							
total Spitt (%) 30.0% 30.0% 70.0% 70.0% 70.0% aximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 50.0 set Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 set Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 set Time Adjust (s) -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 set Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 set Time Adjust (s) -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 set Time (s) set Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 set Time Adjust (s) -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 set Time (s) set Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 set Time Adjust (s) set Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	Total Split (s)							
aximum Green (s) 18.0 18.0 50.0 50.0 50.0 50.0 solutions (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Total Split (%)							
Sellow Time (s)	Maximum Green (s)							
I-Red Time (s)	Yellow Time (s)							
set Time Adjust (s)	All-Red Time (s)							
tal Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 sad/Lag sad/Lag Optimize? shicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 acall Mode None None C-Max C-Max C-Max alk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 3.0 ash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 11.0 11.0 section Capacity Other (s) 14.7 14.7 55.3 55.3 55.3 55.3 55.3 55.3 55.3 55	Lost Time Adjust (s)							
add-Lag Optimize? shicle Extension (s)								
Pad-Lag Optimize? Pathicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		5.0	5.0	5.0		5.0	0.0	
An analysis Period Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0								
None None C-Max C-Max C-Max		3.0	3.0	3 በ		3 0	3.0	
alk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 ash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.					-			
ash Dont Walk (s)					,			
adestrian Calls (#/hr)	()							
tell Effct Green (s) 14.7 14.7 55.3 55.3 55.3 tutated g/C Ratio 0.18 0.18 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69								
Catalog Cata								
c Ratio								
## Service Body 37.2 10.6 11.6 3.2 5.5 ## Service Body 30.7 11.6 3.2 5.5 ## Service Body 30.7 11.6 5.4 ## Service Body 5.5 ## Servi								
ueue Delay								
Stal Delay 37.2 10.6 11.6 3.2 5.5 S								
DS D B B A A A A proceed by 30.7 11.6 5.4 proceed by 30.7 11.6 pr	Queue Delay							
proach Delay 30.7 11.6 5.4 proach LOS C B A tersection Summary ea Type: Other yole Length: 80 ctuated Cycle Length: 80 fiset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green attural Cycle: 60 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 Intersection LOS: B tersection Capacity Utilization 58.5% ICU Level of Service B halysis Period (min) 15 libits and Phases: 9024: Dufferin St & New Liberty St	Total Delay							
proach LOS C B A tersection Summary rea Type: Other yole Length: 80 tutated Cycle Length: 80 fiset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green atural Cycle: 60 control Type: Actuated-Coordinated aximum v/c Ratio: 0.60 tersection Capacity Utilization 58.5% ICU Level of Service B halysis Period (min) 15 Journal Cycle: 80 Journ	LOS		В			Α		
tersection Summary ea Type: Other ycle Length: 80 tutated Cycle Length: 80 ffset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green atural Cycle: 60 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 Intersection LOS: B tersection Capacity Utilization 58.5% ICU Level of Service B halysis Period (min) 15 Jolits and Phases: 9024: Dufferin St & New Liberty St	Approach Delay							
rea Type: Other ycle Length: 80 ttuated Cycle Length: 80 ffset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green atural Cycle: 60 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 Intersection LOS: B tersection Capacity Utilization 58.5% ICU Level of Service B halysis Period (min) 15 Journal Cycle: 60 Journal Cycle: 60 ICU Level of Service B Journal Cycle: 60 Journ	Approach LOS	С		В			Α	
ycle Length: 80 tuated Cycle Length: 80 ffset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green atural Cycle: 60 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.60 teresection Signal Delay: 11.7 Intersection LOS: B teresection Capacity Utilization 58.5% ICU Level of Service B halysis Period (min) 15 Dilits and Phases: 9024: Dufferin St & New Liberty St	Intersection Summary							
Stuated Čycle Length: 80 ffset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green attural Cycle: 60 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 Intersection LOS: B tersection Capacity Utilization 58.5% ICU Level of Service B halysis Period (min) 15 Dilits and Phases: 9024: Dufferin St & New Liberty St	Area Type:	Other						
cituated Čycle Length: 80 ffset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green attural Cycle: 60 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 Intersection LOS: B tersection Capacity Utilization 58.5% ICU Level of Service B halysis Period (min) 15 Dilits and Phases: 9024: Dufferin St & New Liberty St	Cycle Length: 80							
ffset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green atural Cycle: 60 notical Type: Actuated-Coordinated eximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 tersection Capacity Utilization 58.5% lCU Level of Service B nalysis Period (min) 15 lits and Phases: 9024: Dufferin St & New Liberty St	Actuated Cycle Length: 80)						
atural Cycle: 60 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 Intersection LOS: B tersection Capacity Utilization 58.5% ICU Level of Service B halysis Period (min) 15 Dilits and Phases: 9024: Dufferin St & New Liberty St			NBT and	6:SBTL. S	Start of Gre	en		
ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 tersection Capacity Utilization 58.5% lcu Level of Service B halysis Period (min) 15 Dilits and Phases: 9024: Dufferin St & New Liberty St	Natural Cycle: 60		2 . 2.10	, 0				
aximum v/c Ratio: 0.60 tersection Signal Delay: 11.7 tersection Capacity Utilization 58.5% tCU Level of Service B halysis Period (min) 15 Dilits and Phases: 9024: Dufferin St & New Liberty St		oordinated						
tersection Signal Delay: 11.7 Intersection LOS: B tersection Capacity Utilization 58.5% ICU Level of Service B nalysis Period (min) 15 Dilits and Phases: 9024: Dufferin St & New Liberty St 22 (R) 55 5	Maximum v/c Ratio: 0.60							
tersection Capacity Utilization 58.5% ICU Level of Service B nalysis Period (min) 15 Dilts and Phases: 9024: Dufferin St & New Liberty St		11 7			Inte	rsectio	n I OS: B	
nalysis Period (min) 15 Dilits and Phases: 9024: Dufferin St & New Liberty St 02 (R) 55								
Dilits and Phases: 9024: Dufferin St & New Liberty St					100	LOVE	OI OOI VICE D	
1 02 (R)	raidiyələ i Gilou (illill) 13							
1 02 (R)	Splits and Phases: 9024	4: Dufferin St	t & New L	Liberty St				
6s				,				
05 S	I Ø2 (R)						_	
Ø6 (R)	56 s							
T DO (IV)	(D)							
	56 s							

Scenario 1 Future Background AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

9024: Dufferin St & New Liberty St

09/30/2021

	•	•	†	-	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	192	62	578	23	743
v/c Ratio	0.60	0.27	0.47	0.05	0.58
Control Delay	37.2	10.6	11.6	3.2	5.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	37.2	10.6	11.6	3.2	5.5
Queue Length 50th (m)	26.9	0.0	31.4	0.5	32.3
Queue Length 95th (m)	43.9	9.1	121.2	m0.9	m56.6
Internal Link Dist (m)	83.6		167.3		50.7
Turn Bay Length (m)	15.0				
Base Capacity (vph)	415	277	1242	500	1273
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.46	0.22	0.47	0.05	0.58

m Volume for 95th percentile queue is metered by upstream signal.

	•	•	†	/	>	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	₽		*	†		
Traffic Volume (vph)	173	56	392	128	21	669		
Future Volume (vph)	173	56	392	128	21	669		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0	5.0	5.0		5.0	5.0		
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00		
Frpb, ped/bikes	1.00	0.62	1.00		1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00		
Frt	1.00	0.85	0.97		1.00	1.00		
Flt Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1750	969	1781		1750	1842		
Flt Permitted	0.95	1.00	1.00		0.39	1.00		
Satd. Flow (perm)	1750	969	1781		724	1842		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	192	62	436	142	23	743		
RTOR Reduction (vph)	0	51	12	0	0	0		
Lane Group Flow (vph)	192	11	566	0	23	743		
Confl. Peds. (#/hr)		163						
Confl. Bikes (#/hr)		5						
Turn Type	Perm	Perm	NA		Perm	NA		
Protected Phases			2			6		
Permitted Phases	8	8			6			
Actuated Green, G (s)	13.7	13.7	54.3		54.3	54.3		
Effective Green, g (s)	14.7	14.7	55.3		55.3	55.3		
Actuated g/C Ratio	0.18	0.18	0.69		0.69	0.69		
Clearance Time (s)	6.0	6.0	6.0		6.0	6.0		
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	321	178	1231		500	1273		
v/s Ratio Prot			0.32			c0.40		
v/s Ratio Perm	c0.11	0.01			0.03			
v/c Ratio	0.60	0.06	0.46		0.05	0.58		
Uniform Delay, d1	29.9	27.0	5.6		3.9	6.4		
Progression Factor	1.00	1.00	1.74		0.63	0.71		
Incremental Delay, d2	3.0	0.2	1.2		0.0	0.2		
Delay (s)	32.9	27.1	10.9		2.5	4.7		
Level of Service	С	С	В		Α	Α		
Approach Delay (s)	31.5		10.9			4.7		
Approach LOS	С		В			Α		
Intersection Summary								
HCM 2000 Control Delay			11.2	Н	CM 2000	Level of Servi	`p	
HCM 2000 Volume to Capa	city ratio		0.59	- 110	OW 2000	LOVE OF OCIVI		
Actuated Cycle Length (s)	ony radio		80.0	Si	um of lost	time (s)		
Intersection Capacity Utiliza	ation		58.5%			of Service		
Analysis Period (min)			15	10		J. 501 1100		
0.00 1000 (11111)			10					

c Critical Lane Group

	•	•	4	†	↓	✓	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	7	Ţ	†	†		
Traffic Volume (veh/h)	0	81	0	552	372	86	
Future Volume (Veh/h)	0	81	0	552	372	86	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	90	0	613	413	96	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)				241			
pX, platoon unblocked	0.86						
vC, conflicting volume	1074	461	509				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1006	461	509				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	85	100				
cM capacity (veh/h)	231	600	1056				
Direction. Lane #	EB 1	EB 2	NB 1	NB 2	SB 1		
Volume Total	0	90	0	613	509		
Volume Left	0	0	0	013	0		
Volume Right	0	90	0	0	96		
volume Right cSH	1700	600	1700	1700	1700		
Volume to Capacity	0.00	0.15	0.00	0.36	0.30		
				0.36	0.30		
Queue Length 95th (m)	0.0	4.0	0.0				
Control Delay (s) Lane LOS	0.0 A	12.0	0.0	0.0	0.0		
		В	0.0		0.0		
Approach Delay (s)	12.0 B		0.0		0.0		
Approach LOS	В						
Intersection Summary							
Average Delay			0.9				
Intersection Capacity Utili:	zation		36.5%	IC	CU Level of	Service	Α
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 9025: Strachan Ave & New Liberty St

Lanes, Volumes, Timings 97: Yukon Place & British Colombia Rd

09/30/2021

	ၨ	-	•	•	←	•	4	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	\$		7	†	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Storage Length (m)	30.0		0.0	20.0		20.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		1	0		0	0		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor				1.00				0.99			0.97	
Frt						0.850					0.865	
Flt Protected	0.950			0.950				0.957				
Satd. Flow (prot)	1685	1824	0	1685	1756	1507	0	1798	0	0	1574	0
Flt Permitted	0.555			0.494								
Satd. Flow (perm)	984	1824	0	874	1756	1507	0	1860	0	0	1574	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						45					514	
Link Speed (k/h)		30			30			30			30	
Link Distance (m)		164.9			265.9			92.0			121.3	
Travel Time (s)		19.8			31.9			11.0			14.6	
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	29	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.09	1.01	1.09	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5	6.1	6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8	6.1	6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report

Page 1

Lanes, Volumes, Timings 97: Yukon Place & British Colombia Rd

20	10	Λ	in	^	2	i
19	1.5	u	17	u	1/	

	۶	→	•	•	←	•	4	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	33.0	33.0		33.0	33.0	33.0	7.0	7.0		7.0	7.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	24.0	24.0		24.0	24.0	
Total Split (s)	47.0	47.0		47.0	47.0	47.0	25.0	25.0		25.0	25.0	
Total Split (%)	65.3%	65.3%		65.3%	65.3%	65.3%	34.7%	34.7%		34.7%	34.7%	
Maximum Green (s)	41.0	41.0		41.0	41.0	41.0	19.0	19.0		19.0	19.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0	-1.0		-1.0			-1.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0		9.0	9.0	9.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0		0	0	
Act Effct Green (s)	58.5	58.5		58.5	58.5	58.5		8.0			8.0	
Actuated g/C Ratio	0.90	0.90		0.90	0.90	0.90		0.12			0.12	
v/c Ratio	0.00	0.29		0.00	0.22	0.00		0.04			0.05	
Control Delay	2.0	2.3		2.0	2.1	0.0		27.0			0.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay	2.0	2.3		2.0	2.1	0.0		27.0			0.1	
LOS	Α	Α		Α	Α	Α		С			Α	
Approach Delay		2.3			2.1			27.0			0.1	
Approach LOS		Α			Α			С			Α	
Intersection Summary												

Intersection Summa	ary	
Area Type:	Other	
Cycle Length: 72		
Actuated Cycle Len	igth: 65.2	
Natural Cycle: 65		
Control Type: Semi	Act-Uncoord	
Maximum v/c Ratio	: 0.29	
Intersection Signal	Delay: 2.4	Intersection LOS: A
Intersection Capaci	ty Utilization 73.3%	ICU Level of Service D
Analysis Period (mi	n) 15	

Splits and Phases: 97: Yukon Place & British Colombia Rd

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report

Page 3

HCM Signalized Intersection Capacity Analysis 97: Yukon Place & British Colombia Rd

09/30/2021

	۶	→	•	•	←	•	1	†	1	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		ሻ	*	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00			0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		0.99			1.00	
Frt	1.00	1.00		1.00	1.00	0.85		1.00			0.86	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.96			1.00	
Satd. Flow (prot)	1685	1824		1681	1756	1507		1781			1574	
Flt Permitted	0.56	1.00		0.49	1.00	1.00		1.00			1.00	
Satd. Flow (perm)	985	1824		873	1756	1507		1860			1574	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	27	0
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	2	0
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	54.3	54.3		54.3	54.3	54.3		2.6			2.6	
Effective Green, g (s)	55.3	55.3		55.3	55.3	55.3		3.6			3.6	
Actuated g/C Ratio	0.80	0.80		0.80	0.80	0.80		0.05			0.05	
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	790	1463		700	1409	1209		97			82	
v/s Ratio Prot		c0.26			0.19						0.00	
v/s Ratio Perm	0.00			0.00		0.00		c0.00				
v/c Ratio	0.00	0.32		0.00	0.24	0.00		0.09			0.02	
Uniform Delay, d1	1.3	1.8		1.3	1.7	1.3		31.1			31.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	0.0	0.6		0.0	0.4	0.0		0.4			0.1	
Delay (s)	1.3	2.4		1.3	2.1	1.3		31.5			31.1	
Level of Service	Α	Α		Α	Α	Α		С			С	
Approach Delay (s)		2.4			2.1			31.5			31.1	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			3.5	Н	CM 2000	Level of S	Service		A			
HCM 2000 Volume to Capac	ity ratio		0.31		J.71 2000	23101010	3014100		- 11			
Actuated Cycle Length (s)	,		68.9	Si	um of lost	time (s)			10.0			
Intersection Capacity Utilizat	ion		73.3%			of Service			D			
Analysis Period (min)			15	10	2 20.510							
c Critical Lane Group			.,									

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements

Lanes, Volumes, Timings 222: Lakeshore Blvd & Strachan Ave

	•	-	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^		ř	ተተተ			4		, N	4	7
Traffic Volume (vph)	523	1621	3	12	2476	0	0	12	0	519	48	404
Future Volume (vph)	523	1621	3	12	2476	0	0	12	0	519	48	404
Ideal Flow (vphpl)	2150	1900	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Storage Length (m)	60.0		0.0	60.0		50.0	0.0		0.0	140.0		50.0
Storage Lanes	1		0	1		0	0		0	1		1
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	0.91	0.91	1.00	*0.95	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor		1.00		1.00								0.92
Frt												0.850
Flt Protected	0.950			0.950						0.950	0.960	
Satd. Flow (prot)	1816	4794	0	1685	5883	0	0	1879	0	1585	1699	1507
Flt Permitted	0.072			0.098						0.749	0.753	
Satd. Flow (perm)	138	4794	0	174	5883	0	0	1879	0	1249	1333	1388
Right Turn on Red			Yes			Yes	-		Yes			Yes
Satd. Flow (RTOR)												230
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		310.3			196.6			116.5			205.6	
Travel Time (s)		18.6			11.8			10.5			18.5	
Confl. Peds. (#/hr)	5	10.0	8	8	11.0	5	43	10.0			10.0	43
Confl. Bikes (#/hr)			Ŭ	Ū			-10		12			37
Peak Hour Factor	0.90	0.95	0.95	0.90	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	5%	7%	0%	0%	3%	0%	0%	0%	0%	1%	0%	0%
Adj. Flow (vph)	581	1706	3	13	2606	0	0	13	0	546	51	425
Shared Lane Traffic (%)	001	1100	, i	10	2000			10		46%	01	120
Lane Group Flow (vph)	581	1709	0	13	2606	0	0	13	0	295	302	425
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	3.0	rtigiit	Loit	3.0	rtigiit	Lon	3.0	rtigiit	Lon	3.0	rtigrit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	0.93	1.01	1.01	1.09	0.86	1.09	1.01	1.01	1.01	1.09	1.01	1.09
Turning Speed (k/h)	24	1.01	14	24	0.00	1.03	24	1.01	1.01	24	1.01	1.03
Number of Detectors	1	2	17	1	2	17	1	2	17	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Type Detector 1 Channel	CI+EX	CI+EX		CI+EX	CI+EX		CI+EX	CI+EX		CI+EX	CI+EX	CI+EX
	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Extend (s)												
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 5

HDR Corporation

Lanes, Volumes, Timings 222: Lakeshore Blvd & Strachan Ave

09/30/2021

Page 6

	•	-	•	•	—	•	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	pm+ov
Protected Phases	5	2		1	6			3			4	5
Permitted Phases	2			6			3			4		4
Detector Phase	5	2		1	6		3	3		4	4	5
Switch Phase												
Minimum Initial (s)	6.0	29.0		6.0	30.0		12.0	12.0		10.0	10.0	6.0
Minimum Split (s)	12.0	35.0		12.0	36.0		21.0	21.0		45.0	45.0	12.0
Total Split (s)	27.0	66.0		12.0	51.0		21.0	21.0		45.0	45.0	27.0
Total Split (%)	18.8%	45.8%		8.3%	35.4%		14.6%	14.6%		31.3%	31.3%	18.8%
Maximum Green (s)	21.0	60.0		6.0	45.0		12.0	12.0		37.0	37.0	21.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		6.0	6.0		5.0	5.0	3.0
Lost Time Adjust (s)	-3.0	-1.0		-1.0	-3.0			-1.0		-1.0	-1.0	-1.0
Total Lost Time (s)	3.0	5.0		5.0	3.0			8.0		7.0	7.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	Lead
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Max		None	Max		None	None		None	None	None
Walk Time (s)		7.0			7.0					7.0	7.0	
Flash Dont Walk (s)		22.0			22.0					30.0	30.0	
Pedestrian Calls (#/hr)		3			2					0	0	
Act Effct Green (s)	75.8	69.5		53.6	48.5			13.1		34.7	34.7	59.0
Actuated g/C Ratio	0.59	0.54		0.42	0.38			0.10		0.27	0.27	0.46
v/c Ratio	1.46	0.66		0.08	1.17			0.07		0.87	0.84	0.54
Control Delay	250.0	26.2		18.9	117.8			58.8		71.6	65.9	13.0
Queue Delay	0.0	0.0		0.0	0.2			0.0		0.0	0.0	0.0
Total Delay	250.0	26.2		18.9	118.1			58.8		71.6	65.9	13.0
LOS	F	С		В	F			Е		Е	Е	В
Approach Delay		83.0			117.6			58.8			45.6	
Approach LOS		F			F			Е			D	
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 12	8.1											
Natural Cycle: 145												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 1.46												
Intersection Signal Delay:	91.7			lr	ntersection	LOS: F						
Intersection Capacity Utiliz		%		IC	CU Level o	of Service	H					
Analysis Period (min) 15												
* User Entered Value												
Splits and Phases: 222:	Lakeshore	Blvd & Stra	achan Av	/e								
√ø₁ ♣ø₂						∜Îø3		1	4			
12 s 66 s						21 s		45 s				
₹ Ø5	₹ ø6											

	•	-	•	←	†	-	↓	1	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	581	1709	13	2606	13	295	302	425	
v/c Ratio	1.46	0.66	0.08	1.17	0.07	0.87	0.84	0.54	
Control Delay	250.0	26.2	18.9	117.8	58.8	71.6	65.9	13.0	
Queue Delay	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
Total Delay	250.0	26.2	18.9	118.1	58.8	71.6	65.9	13.0	
Queue Length 50th (m)	~175.2	90.3	1.2	~257.1	2.9	67.7	68.5	24.6	
Queue Length 95th (m)	#298.7	178.4	5.5	#361.5	10.5	#141.4	#140.1	66.7	
Internal Link Dist (m)		286.3		172.6	92.5		181.6		
Turn Bay Length (m)	60.0		60.0			140.0		50.0	
Base Capacity (vph)	399	2602	156	2228	192	374	399	783	
Starvation Cap Reductn	0	0	0	186	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.46	0.66	0.08	1.28	0.07	0.79	0.76	0.54	

HCM	Signal	ızed	Interse	ection	Capacity	Analysis
222· I	akesh	ore F	& hvl	Strack	nan Ave	

ZZZ. Lakeshore Di		acriari	AVC								•	00/2021
	۶	-	•	•	-	•	1	Ť	-	-	ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ተተኈ		7	ተተተ			4		ሻ	ર્ન	7
Traffic Volume (vph)	523	1621	3	12	2476	0	0	12	0	519	48	404
Future Volume (vph)	523	1621	3	12	2476	0	0	12	0	519	48	404
Ideal Flow (vphpl)	2150	1900	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Total Lost time (s)	3.0	5.0		5.0	3.0			8.0		7.0	7.0	5.0
Lane Util. Factor	1.00	0.91		1.00	*0.95			1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	0.95
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00			1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	0.96	1.00
Satd. Flow (prot)	1816	4793		1685	5883			1879		1585	1700	1436
Flt Permitted	0.07	1.00		0.10	1.00			1.00		0.75	0.75	1.00
Satd. Flow (perm)	138	4793		174	5883			1879		1249	1333	1436
Peak-hour factor, PHF	0.90	0.95	0.95	0.90	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	581	1706	3	13	2606	0	0	13	0	546	51	425
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	135
Lane Group Flow (vph)	581	1709	0	13	2606	0	0	13	0	295	302	290
Confl. Peds. (#/hr)	5		8	8		5	43					43
Confl. Bikes (#/hr)									12			37
Heavy Vehicles (%)	5%	7%	0%	0%	3%	0%	0%	0%	0%	1%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	pm+ov
Protected Phases	5	2		1	6			3			4	5
Permitted Phases	2			6			3			4		4
Actuated Green, G (s)	76.6	68.5		51.5	49.4			4.3		33.7	33.7	54.9
Effective Green, g (s)	79.6	69.5		53.5	52.4			5.3		34.7	34.7	56.9
Actuated g/C Ratio	0.58	0.51		0.39	0.38			0.04		0.25	0.25	0.41
Clearance Time (s)	6.0	6.0		6.0	6.0			9.0		8.0	8.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	374	2420		101	2240			72		314	336	593
v/s Ratio Prot	c0.27	0.36		0.00	0.44			c0.01				0.08
v/s Ratio Perm	c0.62			0.05						c0.24	0.23	0.12
v/c Ratio	1.55	0.71		0.13	1.16			0.18		0.94	0.90	0.49
Uniform Delay, d1	46.0	26.2		26.5	42.6			64.0		50.4	49.8	29.7
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00
Incremental Delay, d2	261.9	1.8		0.6	78.9			1.2		34.7	25.2	0.6
Delay (s)	307.9	28.0		27.1	121.5			65.3		85.2	75.0	30.3
Level of Service	F	С		С	F			Е		F	Е	C
Approach Delay (s)		99.0			121.0			65.3			59.3	
Approach LOS		F			F			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			101.8	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.39						_			
Actuated Cycle Length (s)	,		137.6	S	um of lost	time (s)			25.0			
Intersection Capacity Utiliz	ation		109.2%		CU Level	. ,			Н			
Analysis Period (min)			15	· ·								
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	101.8	HCM 2000 Level of Service	F	
HCM 2000 Volume to Capacity ratio	1.39			
Actuated Cycle Length (s)	137.6	Sum of lost time (s)	25.0	
Intersection Capacity Utilization	109.2%	ICU Level of Service	Н	
Analysis Period (min)	15			
- 0-1111 0				

c Critical Lane Group

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 538: Strachan Ave & King St

09/30/2021

	۶	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		7	f)		ሻ	f)	
Traffic Volume (vph)	0	472	85	4	842	68	248	350	156	27	228	27
Future Volume (vph)	0	472	85	4	842	68	248	350	156	27	228	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	25.0		0.0	25.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.94			0.99		0.89	0.97		0.97	0.98	
Frt		0.977			0.989			0.954			0.984	
Flt Protected							0.950			0.950		
Satd. Flow (prot)	0	2618	0	0	2869	0	1486	1546	0	1516	1616	0
Flt Permitted					0.953		0.541			0.276		
Satd. Flow (perm)	0	2618	0	0	2732	0	749	1546	0	428	1616	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		32			13			36			10	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		255.2			358.6			424.1			379.9	
Travel Time (s)		18.4			25.8			38.2			34.2	
Confl. Peds. (#/hr)	77		179	179		77	158		81	81		158
Confl. Bikes (#/hr)			5			4			24			5
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	0%	6%	17%	100%	4%	0%	2%	1%	0%	0%	1%	0%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	0	502	90	4	896	72	264	372	166	29	243	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	592	0	0	972	0	264	538	0	29	272	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.0	•		3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.23	1.16	1.16	1.23	1.16	1.25	1.16	1.16	1.25	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 9 Lanes, Volumes, Timings 538: Strachan Ave & King St

		12	

	•	-	•	•	←	•	1	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	20.0	20.0		20.0	20.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		27.0	27.0		27.0	27.0	
Total Split (s)	40.0	40.0		40.0	40.0		40.0	40.0		40.0	40.0	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)	34.0	34.0		34.0	34.0		34.0	34.0		34.0	34.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0		-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		25	25		27	27		100	100	
Act Effct Green (s)		35.0			35.0		35.0	35.0		35.0	35.0	
Actuated q/C Ratio		0.44			0.44		0.44	0.44		0.44	0.44	
v/c Ratio		0.51			0.81		0.81	0.77		0.16	0.38	
Control Delay		17.2			15.3		41.4	27.1		24.6	25.8	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		17.2			15.3		41.4	27.1		24.6	25.8	
LOS		В			В		D	С		С	С	
Approach Delay		17.2			15.3			31.8			25.7	
Approach LOS		В			В			С			С	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 80												
Actuated Cycle Length: 8	0											
Offset: 50 (63%), Referen	ced to phase	2:EBTL a	and 6:WB	ΓL, Start	of 1st Gre	en						
Natural Cycle: 55												
Control Type: Actuated-C	oordinated											
Maximum v/c Ratio: 0.81												
Intersection Signal Delay:	21.9			Ir	ntersection	LOS: C						
Intersection Capacity Utili	zation 94.5%			IC	CU Level o	of Service	F					
Analysis Period (min) 15												
Splits and Phases: 538	: Strachan A	ve & Kina	St									
A					⊸±							

538: Strachan Ave & King St

09/30/2021

Synchro 11 Report

Page 11

	-	—	1	†	-	↓
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	592	972	264	538	29	272
v/c Ratio	0.51	0.81	0.81	0.77	0.16	0.38
Control Delay	17.2	15.3	41.4	27.1	24.6	25.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.2	15.3	41.4	27.1	24.6	25.8
Queue Length 50th (m)	31.1	19.8	33.6	62.7	3.7	38.0
Queue Length 95th (m)	45.4	59.5	#75.5	#109.1	m8.0	m56.6
Internal Link Dist (m)	231.2	334.6		400.1		355.9
Turn Bay Length (m)			25.0		25.0	
Base Capacity (vph)	1163	1202	327	696	187	712
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.51	0.81	0.81	0.77	0.16	0.38

HCM Signalized Intersection Capacity Analysis

538: Strachan Ave & King St

	۶	→	•	•	←	•	4	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			413		, j	ĵ,		Ť	î,	
Traffic Volume (vph)	0	472	85	4	842	68	248	350	156	27	228	27
Future Volume (vph)	0	472	85	4	842	68	248	350	156	27	228	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.95			0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.94			0.99		1.00	0.97		1.00	0.98	
Flpb, ped/bikes		1.00			1.00		0.89	1.00		0.97	1.00	
Frt		0.98			0.99		1.00	0.95		1.00	0.98	
Flt Protected		1.00			1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		2618			2866		1316	1546		1472	1616	
Flt Permitted		1.00			0.95		0.54	1.00		0.28	1.00	
Satd. Flow (perm)		2618			2732		749	1546		427	1616	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	502	90	4	896	72	264	372	166	29	243	29
RTOR Reduction (vph)	0	18	0	0	7	0	0	20	0	0	6	0
Lane Group Flow (vph)	0	574	0	0	965	0	264	518	0	29	266	0
Confl. Peds. (#/hr)	77		179	179		77	158		81	81		158
Confl. Bikes (#/hr)			5			4			24			5
Heavy Vehicles (%)	0%	6%	17%	100%	4%	0%	2%	1%	0%	0%	1%	0%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA		Perm	NA		Perm	NA	-	Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2	=		6	-		4			8	-	
Actuated Green, G (s)		34.0			34.0		34.0	34.0		34.0	34.0	
Effective Green, g (s)		35.0			35.0		35.0	35.0		35.0	35.0	
Actuated g/C Ratio		0.44			0.44		0.44	0.44		0.44	0.44	
Clearance Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		1145			1195		327	676		186	707	
v/s Ratio Prot		0.22			1100		OL1	0.33		100	0.16	
v/s Ratio Perm		0.22			c0.35		c0.35	0.00		0.07	0.10	
v/c Ratio		0.50			0.81		0.81	0.77		0.16	0.38	
Uniform Delay, d1		16.2			19.6		19.6	19.0		13.6	15.2	
Progression Factor		1.00			0.46		1.00	1.00		1.58	1.62	
Incremental Delay, d2		1.6			5.8		18.9	8.1		1.6	1.4	
Delay (s)		17.8			14.8		38.5	27.1		23.1	26.0	
Level of Service		В			В		D	C		C	C	
Approach Delay (s)		17.8			14.8			30.9		-	25.7	
Approach LOS		В			В			C			C	
Intersection Summary												
HCM 2000 Control Delay			21.5	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	rity ratio		0.81	- 11	2.71 2000	23101010	2014100		3			
Actuated Cycle Length (s)	ny ratio		80.0	Q	um of lost	time (s)			10.0			
Intersection Capacity Utilizat	ion		94.5%			of Service			10.0			
Analysis Period (min)			15	ic	C LOVEI (JI JUI VILLE			'			
c Critical Lane Group			10									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

09/30/2021

	۶	-	\rightarrow	•	←	•	4	†	~	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		473			413			413-			414	
Traffic Volume (vph)	81	458	54	33	793	104	54	614	42	113	317	74
Future Volume (vph)	81	458	54	33	793	104	54	614	42	113	317	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.96			0.96			0.97			0.93	
Frt		0.986			0.983			0.991			0.978	
Flt Protected		0.993			0.998			0.996			0.989	
Satd. Flow (prot)	0	2874	0	0	2821	0	0	2684	0	0	2590	0
Flt Permitted		0.587			0.904			0.808			0.638	
Satd. Flow (perm)	0	1690	0	0	2546	0	0	2159	0	0	1634	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		15			20			9			24	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		291.1			316.7			212.5			385.1	
Travel Time (s)		21.0			22.8			15.3			27.7	
Confl. Peds. (#/hr)	278		317	317		278	331		263	263		331
Confl. Bikes (#/hr)			3			73			118			6
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	6%	3%	4%	2%	2%	4%	7%	9%	9%	5%	13%	5%
Bus Blockages (#/hr)	12	12	12	24	24	24	12	30	30	0	18	18
Adj. Flow (vph)	93	526	62	38	911	120	62	706	48	130	364	85
Shared Lane Traffic (%)					***							
Lane Group Flow (vph)	0	681	0	0	1069	0	0	816	0	0	579	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	J .		0.0	J .		0.0	J -		0.0	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.20	1.16	1.16	1.23	1.16	1.16	1.25	1.16	1.16	1.22	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		2			6		3	8			4	
Permitted Phases	2			6			8			4		
Minimum Split (s)	27.0	27.0		27.0	27.0		10.0	27.0		27.0	27.0	
Total Split (s)	45.0	45.0		45.0	45.0		10.0	45.0		35.0	35.0	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		11.1%	50.0%		38.9%	38.9%	
Maximum Green (s)	39.0	39.0		39.0	39.0		6.0	39.0		29.0	29.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		1.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-2.0	
Total Lost Time (s)		5.0			5.0			5.0			4.0	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		100	100			100		100	100	
Act Effct Green (s)		40.0			40.0			40.0			31.0	

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 13

Lanes, Volumes, Timings 539: Dufferin St & King St

539: Dufferin St &	•										09/3	0/2021
	•	→	•	•	+	4	•	†	<i>></i>	/	 	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio		0.44			0.44			0.44			0.34	
v/c Ratio		0.90			0.94			0.82			1.00	
Control Delay		39.6			39.7			29.6			68.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		39.6			39.7			29.6			68.1	
LOS		D			D			С			Е	
Approach Delay		39.6			39.7			29.6			68.1	
Approach LOS		D			D			С			Е	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced	to phase 2:E	EBTL and	6:WBTL	Start of	1st Greer							
Natural Cycle: 90												
Control Type: Pretimed												
Maximum v/c Ratio: 1.00												
Intersection Signal Delay:					tersection							
Intersection Capacity Utiliz	ation 105.4%)		IC	CU Level of	of Service	G					
Analysis Period (min) 15												
Splits and Phases: 539:	Dufferin St 8	Kina St										
<i>A</i> .		<u> </u>			4		\					
→Ø2 (R)						73	▼ Ø4					
45 S					10 s		35 s					
₩ Ø6 (R)					-1≪1	78						
45 -					AE -							

539: Dufferin St & King St

09/30/2021

Synchro 11 Report

Page 15

	-	-	- ↑	. ↓
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	681	1069	816	579
v/c Ratio	0.90	0.94	0.82	1.00
Control Delay	39.6	39.7	29.6	68.1
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	39.6	39.7	29.6	68.1
Queue Length 50th (m)	54.4	88.2	56.6	~50.4
Queue Length 95th (m)	#85.2	#124.4	73.3	#81.6
Internal Link Dist (m)	267.1	292.7	188.5	361.1
Turn Bay Length (m)				
Base Capacity (vph)	759	1142	993	578
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.90	0.94	0.82	1.00
Reduced v/c Ratio	0.90	0.94	0.82	1.00

HCM Signalized Intersection Capacity Analysis 539: Dufferin St & King St

	•	→	•	•	+	•	•	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413-			413			413-			414	
Traffic Volume (vph)	81	458	54	33	793	104	54	614	42	113	317	74
Future Volume (vph)	81	458	54	33	793	104	54	614	42	113	317	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			4.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.97			0.96			0.98			0.95	
Flpb, ped/bikes		0.99			1.00			0.99			0.98	
Frt		0.99			0.98			0.99			0.98	
Flt Protected		0.99			1.00			1.00			0.99	
Satd. Flow (prot)		2861			2812			2667			2533	
Flt Permitted		0.59			0.90			0.81			0.64	
Satd. Flow (perm)		1690			2548			2164			1635	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	93	526	62	38	911	120	62	706	48	130	364	85
RTOR Reduction (vph)	0	8	0	0	11	0	0	5	0	0	16	0
Lane Group Flow (vph)	0	673	0	0	1058	0	0	811	0	0	563	0
Confl. Peds. (#/hr)	278	0,0	317	317	1000	278	331	011	263	263	000	331
Confl. Bikes (#/hr)	2.0		3	0		73	001		118	200		6
Heavy Vehicles (%)	6%	3%	4%	2%	2%	4%	7%	9%	9%	5%	13%	5%
Bus Blockages (#/hr)	12	12	12	24	24	24	12	30	30	0	18	18
Turn Type	Perm	NA		Perm	NA.		pm+pt	NA		Perm	NA	
Protected Phases	1 Cilli	2		1 Cilli	6		3	8		1 Gilli	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	_	39.0		Ū	39.0		•	39.0			29.0	
Effective Green, g (s)		40.0			40.0			40.0			31.0	
Actuated g/C Ratio		0.44			0.44			0.44			0.34	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Lane Grp Cap (vph)		751			1132			1000			563	
v/s Ratio Prot		731			1132			c0.06			505	
v/s Ratio Perm		0.40			c0.42			0.30			c0.34	
v/c Ratio		0.40			0.93			0.81			1.00	
Uniform Delay, d1		23.1			23.8			21.7			29.5	
		1.00			1.00			1.00			1.00	
Progression Factor					15.0			7.1			38.0	
Incremental Delay, d2		15.5 38.6			38.8			28.8			67.5	
Delay (s) Level of Service		38.6 D			38.8 D			28.8 C			67.5 E	
		38.6			38.8			28.8			67.5	
Approach Delay (s)												
Approach LOS		D			D			С			E	
Intersection Summary												
HCM 2000 Control Delay			41.5	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	icity ratio		0.95									
Actuated Cycle Length (s)			90.0		um of lost				12.0			
Intersection Capacity Utiliza	ation		105.4%	IC	CU Level of	of Service	9		G			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	41.5	HCM 2000 Level of Service	D	
HCM 2000 Volume to Capacity ratio	0.95			
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	12.0	
Intersection Capacity Utilization	105.4%	ICU Level of Service	G	
Analysis Period (min)	15			
c Critical Lane Group				

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 17

Lane Group	Ø10	Ø12	Ø14	Ø16
	2010	N IZ	דוט	2010
Lane Configurations Traffic Volume (vph)				
Future Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (m)				
Storage Length (m)				
Storage Lanes				
Taper Length (m)				
Lane Util. Factor				
Ped Bike Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (k/h)				
Link Distance (m)				
Travel Time (s)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Heavy Vehicles (%)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(m)				
Link Offset(m) Crosswalk Width(m)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (k/h)				
Number of Detectors				
Detector Template				
Leading Detector (m)				
Trailing Detector (m)				
Detector 1 Position(m)				
Detector 1 Size(m)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Detector 2 Position(m)				
Detector 2 Size(m)				
Detector 2 Type				
20100101 L 13P0				

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 18

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements

HDR Corporation

Synchro 11 Report Page 19

	٠	-	•	•	←	•	4	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	32.0	32.0		32.0	32.0	32.0	29.0	29.0		29.0	29.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	36.0	36.0		36.0	36.0	
Total Split (s)	39.0	39.0		39.0	39.0	39.0	61.0	61.0		61.0	61.0	
Total Split (%)	27.1%	27.1%		27.1%	27.1%	27.1%	42.4%	42.4%		42.4%	42.4%	
Maximum Green (s)	32.0	32.0		32.0	32.0	32.0	54.0	54.0		54.0	54.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	3.0	3.0		3.0	3.0	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	4.0	4.0		4.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0		3.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	25.0	25.0		25.0	25.0	25.0	22.0	22.0		22.0	22.0	
Pedestrian Calls (#/hr)	18	18		100	100	100	11	11		12	12	
Act Effct Green (s)	33.5	33.5			33.5	33.5	55.9	55.9		55.9	55.9	
Actuated g/C Ratio	0.30	0.30			0.30	0.30	0.50	0.50		0.50	0.50	
v/c Ratio	0.63	0.42			0.61	0.15	2.13	0.70		0.48	0.95	
Control Delay	51.1	8.1			47.6	0.7	585.4	29.9		34.2	50.4	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.5		0.0	0.0	
Total Delay	51.1	8.1			47.6	0.7	585.4	30.4		34.2	50.4	
LOS	D	Α			D	Α	F	С		С	D	
Approach Delay		25.0			35.1			131.9			48.8	
Approach LOS		С			D			F			D	
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 11	2											
Natural Cycle: 150												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 2.13												
Intersection Signal Delay:	70.2			Ir	ntersectio	n I OS: F						
Intersection Capacity Utiliz		%			CU Level							
Analysis Period (min) 15	.αιιοπ 100.0	70			JO LOVOI	OI OCI VICE	7 11					
, , ,	Ctrocker A	0 Ca	da Dh1/r	Tlast Ct								
Splits and Phases: 571:	Strachan A	ve & Cana	iua Biva/h			114	h			14	_	
Ø2				ÅΑ̈́	10		Ø4				Ø12	
61s				22 s		39 s				22 :		
I Do				_		14	_			2		

Lane Group	Ø10	Ø12	Ø14	Ø16	
Detector 2 Channel					
Detector 2 Extend (s)					
Turn Type					
Protected Phases	10	12	14	16	j
Permitted Phases					
Detector Phase					
Switch Phase					
Minimum Initial (s)	7.0	7.0	7.0	7.0)
Minimum Split (s)	22.0	22.0	22.0	22.0)
Total Split (s)	22.0	22.0	22.0	22.0)
Total Split (%)	15%	15%	15%	15%	,
Maximum Green (s)	14.0	14.0	14.0	14.0	J
Yellow Time (s)	4.0	4.0	4.0	4.0	j
All-Red Time (s)	4.0	4.0	4.0	4.0)
Lost Time Adjust (s)					
Total Lost Time (s)					
Lead/Lag					
Lead-Lag Optimize?					
Vehicle Extension (s)	3.0	3.0	3.0	3.0	j
Recall Mode	None	None	None	None	,
Walk Time (s)	0.0	0.0	0.0	0.0)
Flash Dont Walk (s)	0.0	0.0	0.0	0.0)
Pedestrian Calls (#/hr)	16	16	16	16	j
Act Effct Green (s)					
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
LOS					
Approach Delay					
Approach LOS					

Lanes, Volumes, Timings

571: Strachan Ave & Canada Blvd/Fleet St

	•	-	←	•	4	†	-	↓	
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	146	226	174	63	132	590	93	814	
v/c Ratio	0.63	0.42	0.61	0.15	2.13	0.70	0.48	0.95	
Control Delay	51.1	8.1	47.6	0.7	585.4	29.9	34.2	50.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	
Total Delay	51.1	8.1	47.6	0.7	585.4	30.4	34.2	50.4	
Queue Length 50th (m)	23.1	0.9	27.4	0.0	~26.7	73.7	10.1	127.2	
Queue Length 95th (m)	#67.6	22.1	#73.1	0.0	#84.5	#182.0	38.9	#316.4	
Internal Link Dist (m)		119.4	205.0			181.6		217.4	
Turn Bay Length (m)	25.0			50.0	30.0		25.0		
Base Capacity (vph)	233	542	287	427	62	846	193	855	
Starvation Cap Reductn	0	0	0	0	0	57	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.63	0.42	0.61	0.15	2.13	0.75	0.48	0.95	

,	•	→	•	•	—	•	4	†	~	/		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.			ર્ન	7	*	ĵ»		*	ĵ.	
Traffic Volume (vph)	139	7	208	77	88	60	125	473	87	88	706	67
Future Volume (vph)	139	7	208	77	88	60	125	473	87	88	706	67
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.88			1.00	0.75	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.83	1.00			0.97	1.00	1.00	1.00		0.98	1.00	
Frt	1.00	0.85			1.00	0.85	1.00	0.98		1.00	0.99	
Flt Protected	0.95	1.00			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1314	1327			1554	1133	1652	1690		1548	1712	
Flt Permitted	0.58	1.00			0.61	1.00	0.07	1.00		0.23	1.00	
Satd. Flow (perm)	802	1327			963	1133	124	1690		381	1712	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	146	7	219	81	93	63	132	498	92	93	743	71
RTOR Reduction (vph)	0	159	0	0	0	46	0	4	0	0	2	0
Lane Group Flow (vph)	146	67	0	0	174	17	132	586	0	93	812	0
Confl. Peds. (#/hr)	122	-	55	55		122	37		33	33	•	37
Confl. Bikes (#/hr)			3									2
Heavy Vehicles (%)	6%	12%	6%	1%	26%	0%	2%	8%	2%	7%	8%	1%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	- 77
Protected Phases	1 01111	4		1 01111	8	1 01111	1 01111	2		1 01111	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.5	32.5			32.5	32.5	54.9	54.9		54.9	54.9	
Effective Green, g (s)	33.5	33.5			33.5	33.5	55.9	55.9		55.9	55.9	
Actuated g/C Ratio	0.27	0.27			0.27	0.27	0.46	0.46		0.46	0.46	
Clearance Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	219	363			263	310	56	773		174	783	
v/s Ratio Prot	213	0.05			200	310	50	0.35		174	0.47	
v/s Ratio Perm	c0.18	0.00			0.18	0.02	c1.06	0.00		0.24	0.47	
v/c Ratio	0.67	0.18			0.16	0.02	2.36	0.76		0.53	1.04	
Uniform Delay, d1	39.4	33.9			39.3	32.7	33.2	27.5		23.8	33.2	
Progression Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	14.9	1.1			12.4	0.3	662.2	6.9		11.3	42.1	
Delay (s)	54.3	35.0			51.7	33.0	695.4	34.4		35.1	75.2	
Level of Service	D	D			D D	C	F	C		D	7 5.2 E	
Approach Delay (s)	D	42.6			46.7	U		155.2		D	71.1	
Approach LOS		42.0 D			40.7 D			F			71.1 E	
		D			U							
Intersection Summary			00.0	- 11	014 0000		<u> </u>					
HCM 2000 Control Delay			90.9	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.62	^		Mar - / \			00.0			
Actuated Cycle Length (s)			122.2		Sum of lost time (s)				28.0			
Intersection Capacity Utiliza	ation		139.0%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

HCM 2000 Control Delay	90.9	HCM 2000 Level of Service	F	
HCM 2000 Volume to Capacity ratio	1.62			
Actuated Cycle Length (s)	122.2	Sum of lost time (s)	28.0	
Intersection Capacity Utilization	139.0%	ICU Level of Service	Н	
Analysis Period (min)	15			
c Critical Lane Group				

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^				77		ተ ተ ጉ				
Traffic Volume (vph)	54	517	0	0	0	571	0	2888	4	0	0	0
Future Volume (vph)	54	517	0	0	0	571	0	2888	4	0	0	0
Ideal Flow (vphpl)	1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Storage Length (m)	15.0		0.0	0.0		80.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	0		1	0		0	0		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	0.88	1.00	0.91	0.91	1.00	1.00	1.00
Ped Bike Factor						0.98						
Frt						0.850						
Flt Protected	0.950											
Satd. Flow (prot)	1652	1939	0	0	0	2756	0	5029	0	0	0	0
Flt Permitted	0.950											
Satd. Flow (perm)	1652	1939	0	0	0	2709	0	5029	0	0	0	0
Right Turn on Red	Yes	1000	Yes			Yes		0020	Yes			Yes
Satd. Flow (RTOR)	76		. 00			407			. 00			. 00
Link Speed (k/h)		60			30			60			60	
Link Distance (m)		411.9			164.9			800.6			492.6	
Travel Time (s)		24.7			19.8			48.0			29.6	
Confl. Bikes (#/hr)		21.7	1		10.0	4		10.0			20.0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	57	544	0	0.00	0.00	601	0.00	3040	4	0.00	0.00	0.00
Shared Lane Traffic (%)	· ·							00.10				
Lane Group Flow (vph)	57	544	0	0	0	601	0	3044	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	3.0	rugiit	Loit	3.0	rugiit	Loit	3.0	rugiit	Loit	3.0	rtigric
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane		1.0						1.0				
Headway Factor	1.09	0.95	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	0.00	14	24	1.01	14	24		14	24	1.01	14
Number of Detectors	1	2				1		2	- ''			
Detector Template	Left	Thru				Right		Thru				
Leading Detector (m)	6.1	30.5				6.1		30.5				
Trailing Detector (m)	0.0	0.0				0.0		0.0				
Detector 1 Position(m)	0.0	0.0				0.0		0.0				
Detector 1 Size(m)	6.1	1.8				6.1		1.8				
Detector 1 Type	CI+Ex	CI+Ex				CI+Ex		CI+Ex				
Detector 1 Channel	OITEX	OI LX				OI LX		OI-LX				
Detector 1 Extend (s)	0.0	0.0				0.0		0.0				
Detector 1 Queue (s)	0.0	0.0				0.0		0.0				
Detector 1 Delay (s)	0.0	0.0				0.0		0.0				
Detector 2 Position(m)	0.0	28.7				0.0		28.7				
Detector 2 Size(m)		1.8						1.8				
Detector 2 Type		Cl+Ex						CI+Ex				
Detector 2 Channel		OI. LX						JI-LX				
Detector 2 Extend (s)		0.0						0.0				

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 23 Lanes, Volumes, Timings

1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

	•	-	•	•	←	•	4	†	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA				Perm		NA				
Protected Phases		4						2				
Permitted Phases	4					9						
Detector Phase	4	4				9		2				
Switch Phase												
Minimum Initial (s)	7.0	7.0				7.0		22.0				
Minimum Split (s)	13.0	13.0				30.0		29.0				
Total Split (s)	36.0	36.0				30.0		78.0				
Total Split (%)	25.0%	25.0%				20.8%		54.2%				
Maximum Green (s)	30.0	30.0				24.0		71.0				
Yellow Time (s)	4.0	4.0				4.0		4.0				
All-Red Time (s)	2.0	2.0				2.0		3.0				
Lost Time Adjust (s)	-1.0	-3.0				-1.0		-1.0				
Total Lost Time (s)	5.0	3.0				5.0		6.0				
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Recall Mode	None	None				None		None				
Walk Time (s)	0.0	0.0						7.0				
Flash Dont Walk (s)	0.0	0.0						15.0				
Pedestrian Calls (#/hr)	0	0						0				
Act Effct Green (s)	31.1	33.1				17.2		72.1				
Actuated g/C Ratio	0.23	0.24				0.13		0.53				
v/c Ratio	0.13	1.16				0.86		1.14				
Control Delay	5.4	138.3				31.7		101.1				
Queue Delay	0.0	0.0				0.0		0.0				
Total Delay	5.4	138.3				31.7		101.1				
LOS	Α	F				С		F				
Approach Delay		125.7			31.7			101.1				
Approach LOS		F			С			F				
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 13	36.4											
Natural Cycle: 150												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 1.16												
Intersection Signal Delay:						n LOS: F						
Intersection Capacity Utiliz	zation 95.0%			IC	U Level	of Service	F					
Analysis Period (min) 15												

Splits and Phases: 1344: Lakeshore Blvd & British Colombia Rd

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

Synchro 11 Report

Page 25

	•	-	•	Ť
Lane Group	EBL	EBT	WBR	NBT
Lane Group Flow (vph)	57	544	601	3044
v/c Ratio	0.13	1.16	0.86	1.14
Control Delay	5.4	138.3	31.7	101.1
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	5.4	138.3	31.7	101.1
Queue Length 50th (m)	0.0	~173.7	30.0	~353.0
Queue Length 95th (m)	7.2	#260.1	54.4	#409.5
Internal Link Dist (m)		387.9		776.6
Turn Bay Length (m)	15.0		80.0	
Base Capacity (vph)	434	470	829	2659
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.13	1.16	0.72	1.14

HCM Signalized Intersection Capacity Analysis 1344: Lakeshore Blvd & British Colombia Rd

	۶	-	•	•	←	•	4	1	/	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•				77		↑ ↑₽				
Traffic Volume (vph)	54	517	0	0	0	571	0	2888	4	0	0	0
Future Volume (vph)	54	517	0	0	0	571	0	2888	4	0	0	0
Ideal Flow (vphpl)	1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	3.0				5.0		6.0				
Lane Util. Factor	1.00	1.00				0.88		0.91				
Frpb, ped/bikes	1.00	1.00				0.98		1.00				
Flpb, ped/bikes	1.00	1.00				1.00		1.00				
Frt	1.00	1.00				0.85		1.00				
Flt Protected	0.95	1.00				1.00		1.00				
Satd. Flow (prot)	1652	1939				2703		5028				
Flt Permitted	0.95	1.00				1.00		1.00				
Satd. Flow (perm)	1652	1939				2703		5028				
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	57	544	0	0	0	601	0	3040	4	0	0	0
RTOR Reduction (vph)	44	0	0	0	0	356	0	0	0	0	0	0
Lane Group Flow (vph)	13	544	0	0	0	245	0	3044	0	0	0	0
Confl. Bikes (#/hr)			1			4						
Turn Type	Perm	NA				Perm		NA				
Protected Phases		4						2				
Permitted Phases	4					9						
Actuated Green, G (s)	30.1	30.1				16.2		71.1				
Effective Green, g (s)	31.1	33.1				17.2		72.1				
Actuated g/C Ratio	0.23	0.24				0.13		0.53				
Clearance Time (s)	6.0	6.0				6.0		7.0				
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Lane Grp Cap (vph)	376	470				340		2657				
v/s Ratio Prot		c0.28						c0.61				
v/s Ratio Perm	0.01					c0.09						
v/c Ratio	0.03	1.16				0.72		1.15				
Uniform Delay, d1	41.0	51.6				57.3		32.2				
Progression Factor	1.00	1.00				1.00		1.00				
Incremental Delay, d2	0.0	92.4				7.4		70.5				
Delay (s)	41.0	144.1				64.7		102.6				
Level of Service	D	F				Е		F				
Approach Delay (s)		134.3			64.7			102.6			0.0	
Approach LOS		F			Е			F			Α	
Intersection Summary												
HCM 2000 Control Delay			101.8	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		1.10									
Actuated Cycle Length (s)			136.4		um of lost				15.0			
Intersection Capacity Utiliza	ition		95.0%	IC	U Level o	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

09/30/2021

	۶	→	•	•	—	•	1	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			413-			413	
Traffic Volume (vph)	5	4	2	236	0	189	0	608	194	91	422	0
Future Volume (vph)	5	4	2	236	0	189	0	608	194	91	422	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.96			0.88			0.87			0.98	
Frt		0.979			0.940			0.964				
Fit Protected		0.977			0.973						0.991	
Satd. Flow (prot)	0	1761	0	0	1600	0	0	2756	0	0	3298	0
Flt Permitted		0.867			0.820						0.626	Ī
Satd. Flow (perm)	0	1536	0	0	1260	0	0	2756	0	0	2049	0
Right Turn on Red			Yes		.200	Yes		2.00	Yes		20.0	Yes
Satd. Flow (RTOR)		2	. 00		41			68				. 00
Link Speed (k/h)		50			40			50			50	
Link Distance (m)		106.6			106.9			249.2			212.5	
Travel Time (s)		7.7			9.6			17.9			15.3	
Confl. Peds. (#/hr)	86	1.1	90	90	3.0	86	128	17.5	216	216	13.3	128
Confl. Bikes (#/hr)	00		30	30		00	120		118	210		6
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
	0.88	0.00	0.00	1%	0.00	2%	0.88	2%	2%	0.00	1%	0.00
Heavy Vehicles (%)					0%	2%						
Bus Blockages (#/hr)	0	0 5	0	0 268	0	215	12	30 691	30 220	12 103	30 480	30
Adj. Flow (vph)	Ö	5	2	208	U	215	U	091	220	103	480	0
Shared Lane Traffic (%)	0	40	^	0	400	0	0	044	^	^	500	0
Lane Group Flow (vph)		13	0	0	483			911	0	0	583	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.10	1.01	1.01	1.10	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
, p==												

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 27

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

	•	→	\rightarrow	•	←	•	4	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Minimum Split (s)	24.0	24.0		24.0	24.0		25.0	25.0		25.0	25.0	
Total Split (s)	40.0	40.0		40.0	40.0		40.0	40.0		40.0	40.0	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)	35.0	35.0		35.0	35.0		34.0	34.0		34.0	34.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-2.0			-1.0			-1.0	
Total Lost Time (s)		4.0			3.0			5.0			5.0	
Lead/Lag					0.0			0.0			0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max		
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	30	30		29	29		100	100		100	100	
Act Effct Green (s)	30	32.8		29	33.8		100	38.2		100	38.2	
Actuated g/C Ratio		0.41			0.42			0.48			0.48	
v/c Ratio		0.41			0.42			0.40			0.40	
Control Delay		11.5			36.6			18.8			19.5	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		11.5			36.6			18.8			19.5	
LOS		11.5 B			30.0 D			10.0 B			19.5 B	
		11.5			36.6			18.8			19.5	
Approach Delay												
Approach LOS		В			D			В			В	
Intersection Summary												
71	Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 79 (99%), Reference	d to phase	2:NBTL a	and 6:SB	TL, Start	of Green							
Natural Cycle: 50												
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.87												
Intersection Signal Delay: 2	3.3			lr	ntersection	LOS: C						
Intersection Capacity Utiliza	tion 85.4%			IC	CU Level of	of Service	Ε					
Analysis Period (min) 15												
Splits and Phases: 1449:	Dufferin St	& Dww/Li	herty St									
opino anu i nascs. 1445.	Danielii 91	. G DWy/Li	DOILY OL		T A							
√Tø2 (R)						04						
40 s					40 s							

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 28

1449: Dufferin St & Dwy/Liberty St

09/30/2021

	-	—	†	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	13	483	911	583
v/c Ratio	0.02	0.87	0.67	0.60
Control Delay	11.5	36.6	18.8	19.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	11.5	36.6	18.8	19.5
Queue Length 50th (m)	0.9	55.2	53.9	35.2
Queue Length 95th (m)	3.7	#104.7	73.2	51.0
Internal Link Dist (m)	82.6	82.9	225.2	188.5
Turn Bay Length (m)				
Base Capacity (vph)	692	604	1351	978
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.02	0.80	0.67	0.60

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1449: Dufferin St & Dwy/Liberty St

	•	→	\rightarrow	•	←	•	1	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			413			414	
Traffic Volume (vph)	5	4	2	236	0	189	0	608	194	91	422	0
Future Volume (vph)	5	4	2	236	0	189	0	608	194	91	422	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			3.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.98			0.94			0.87			1.00	
Flpb, ped/bikes		0.98			0.93			1.00			0.98	
Frt		0.98			0.94			0.96			1.00	
Flt Protected		0.98			0.97			1.00			0.99	
Satd. Flow (prot)		1733			1495			2759			3243	
Flt Permitted		0.87			0.82			1.00			0.63	
Satd. Flow (perm)		1538			1261			2759			2049	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	6	5	2	268	0	215	0	691	220	103	480	0
RTOR Reduction (vph)	0	1	0	0	24	0	0	36	0	0	0	0
Lane Group Flow (vph)	0	12	0	0	459	0	0	875	0	0	583	0
Confl. Peds. (#/hr)	86		90	90		86	128		216	216		128
Confl. Bikes (#/hr)									118			6
Heavy Vehicles (%)	0%	0%	0%	1%	0%	2%	0%	2%	2%	0%	1%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	12	30	30	12	30	30
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		31.8			31.8			37.2			37.2	
Effective Green, g (s)		32.8			33.8			38.2			38.2	
Actuated g/C Ratio		0.41			0.42			0.48			0.48	
Clearance Time (s)		5.0			5.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		630			532			1317			978	
v/s Ratio Prot								c0.32				
v/s Ratio Perm		0.01			c0.36						0.28	
v/c Ratio		0.02			0.86			0.66			0.60	
Uniform Delay, d1		14.0			21.0			16.0			15.3	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.0			13.6			2.7			2.7	
Delay (s)		14.0			34.6			18.7			17.9	
Level of Service		В			С			В			В	
Approach Delay (s)		14.0			34.6			18.7			17.9	
Approach LOS		В			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			22.3	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	tv ratio		0.77									
Actuated Cycle Length (s)			80.0	Si	um of lost	time (s)			9.0			
Intersection Capacity Utilization	on		85.4%		U Level o				Е			
Analysis Period (min)			15									
c Critical Lane Group												

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 1628: Shaw St & King St

	•	-	\rightarrow	•	—	•	4	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			413			413	
Traffic Volume (vph)	15	509	34	0	896	187	84	251	7	80	164	111
Future Volume (vph)	15	509	34	0	896	187	84	251	7	80	164	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.99			0.97			0.98			0.94	
Frt		0.991			0.974			0.997			0.953	
Flt Protected		0.999						0.988			0.989	
Satd. Flow (prot)	0	2778	0	0	2811	0	0	3132	0	0	2703	0
Flt Permitted		0.903						0.716			0.739	
Satd. Flow (perm)	0	2510	0	0	2811	0	0	2237	0	0	1982	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		15			57			3			45	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		199.1			255.2			127.7			380.6	
Travel Time (s)		14.3			18.4			11.5			34.3	
Confl. Peds. (#/hr)	129		116	116		129	104		145	145		104
Confl. Bikes (#/hr)						42						
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles (%)	100%	6%	0%	100%	4%	0%	0%	1%	0%	19%	3%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	18	599	40	0	1054	220	99	295	8	94	193	131
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	657	0	0	1274	0	0	402	0	0	418	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	•		0.0			0.0	•		0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.23	1.16	1.16	1.23	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 31

Lanes, Volumes, Timings 1628: Shaw St & King St

	۶	-	\rightarrow	•	←	*	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	22.0	22.0		22.0	22.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	28.0	28.0		28.0	28.0		26.0	26.0		26.0	26.0	
Total Split (s)	44.0	44.0		44.0	44.0		26.0	26.0		26.0	26.0	
Total Split (%)	62.9%	62.9%		62.9%	62.9%		37.1%	37.1%		37.1%	37.1%	
Maximum Green (s)	38.0	38.0		38.0	38.0		20.0	20.0		20.0	20.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max			C-Max			None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	15.0	15.0		15.0	15.0		13.0	13.0		13.0	13.0	
Pedestrian Calls (#/hr)	100	100		100	100		100	100		100	100	
Act Effct Green (s)		39.0			39.0			21.0			21.0	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
v/c Ratio		0.47			0.80			0.60			0.67	
Control Delay		10.4			16.7 0.0			25.1 0.0			25.2 0.0	
Queue Delay												
Total Delay		10.4			16.7			25.1			25.2	
LOS		B 10.4			B			C			C 25.2	
Approach Delay Approach LOS		10.4 B			16.7 B			25.1 C			25.2 C	
Approach LOS		Б			D			C			C	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 1 (1%), Referenced	d to phase 2:	EBTL and	l 6:WBTL	, Start of	1st Greer	1						
Natural Cycle: 60												
Control Type: Actuated-Co	oordinated											
Maximum v/c Ratio: 0.80												
Intersection Signal Delay:					ntersection							
Intersection Capacity Utiliz	zation 81.1%			I(CU Level	of Service	e D					
Analysis Period (min) 15												
Splits and Phases: 1628	8: Shaw St &	King St										
→ Ø2 (R)							1	04				
44 s							26 s					

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Ø6 (R)

Synchro 11 Report Page 32

Ø8

1628: Shaw St & King St

09/30/2021

Synchro 11 Report

Page 33

	-	←	Ť	¥
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	657	1274	402	418
v/c Ratio	0.47	0.80	0.60	0.67
Control Delay	10.4	16.7	25.1	25.2
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	10.4	16.7	25.1	25.2
Queue Length 50th (m)	24.0	61.2	23.2	22.2
Queue Length 95th (m)	32.7	78.1	34.0	33.8
Internal Link Dist (m)	175.1	231.2	103.7	356.6
Turn Bay Length (m)				
Base Capacity (vph)	1405	1591	673	626
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.47	0.80	0.60	0.67
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 1628: Shaw St & King St

09/30/2021

	۶	→	•	•	←	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413-			413-			सीक			414	
Traffic Volume (vph)	15	509	34	0	896	187	84	251	7	80	164	111
Future Volume (vph)	15	509	34	0	896	187	84	251	7	80	164	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.99			0.97			1.00			0.96	
Flpb, ped/bikes		1.00			1.00			0.99			0.98	
Frt		0.99			0.97			1.00			0.95	
Flt Protected		1.00			1.00			0.99			0.99	
Satd. Flow (prot)		2775			2811			3086			2652	
Flt Permitted		0.90			1.00			0.72			0.74	
Satd. Flow (perm)		2510			2811			2238			1983	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	18	599	40	0	1054	220	99	295	8	94	193	131
RTOR Reduction (vph)	0	7	0	0	25	0	0	2	0	0	32	0
Lane Group Flow (vph)	0	650	0	0	1249	0	0	400	0	0	387	0
Confl. Peds. (#/hr)	129		116	116		129	104		145	145		104
Confl. Bikes (#/hr)						42						
Heavy Vehicles (%)	100%	6%	0%	100%	4%	0%	0%	1%	0%	19%	3%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		38.0			38.0			20.0			20.0	
Effective Green, g (s)		39.0			39.0			21.0			21.0	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1398			1566			671			594	
v/s Ratio Prot					c0.44							
v/s Ratio Perm		0.26						0.18			c0.19	
v/c Ratio		0.47			0.80			0.60			0.65	
Uniform Delay, d1		9.3			12.4			20.9			21.3	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.1			4.3			1.4			2.6	
Delay (s)		10.4			16.7			22.3			23.9	
Level of Service		В			В			С			С	
Approach Delay (s)		10.4			16.7			22.3			23.9	
Approach LOS		В			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			17.1	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.75									
Actuated Cycle Length (s)	,		70.0	Si	um of lost	time (s)			10.0			
Intersection Capacity Utilization	on		81.1%		U Level o				D			
Analysis Period (min)			15			2 2						
c Critical Lane Group			.,									

c Critical Lane Group

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

09/30/2021

	۶	-	\rightarrow	•	←	•	4	†	1	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			4			4	
Traffic Volume (vph)	0	705	0	0	764	115	0	0	0	97	0	75
Future Volume (vph)	0	705	0	0	764	115	0	0	0	97	0	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor					0.98						0.91	
Frt					0.980						0.941	
Flt Protected											0.973	
Satd. Flow (prot)	0	2707	0	0	2585	0	0	1691	0	0	1262	0
Flt Permitted											0.834	
Satd. Flow (perm)	0	2707	0	0	2585	0	0	1691	0	0	1041	0
Right Turn on Red			Yes			Yes	-		Yes			Yes
Satd. Flow (RTOR)					34						51	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		318.4			199.1			158.6			196.7	
Travel Time (s)		22.9			14.3			11.4			14.2	
Confl. Peds. (#/hr)	76	22.0	183	183	14.0	76	91	111	59	59	11.2	91
Confl. Bikes (#/hr)	,,,		100	100		4	01		00	- 00		01
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	0.57	13%	0.57	0.57	14%	12%	0.57	0.57	0.57	17%	0.57	16%
Bus Blockages (#/hr)	24	24	24	24	24	24	0 /0	0 /8	0 /0	0	0 /8	0
Adj. Flow (vph)	0	727	0	0	788	119	0	0	0	100	0	77
Shared Lane Traffic (%)	U	121	U	U	700	113	U	U	U	100	U	- 11
Lane Group Flow (vph)	0	727	0	0	907	0	0	0	0	0	177	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Leit	0.0	Rigiil	Leit	0.0	Rigiit	Leit	0.0	Rigiit	Leit	0.0	Rigit
Link Offset(m)		0.0			0.0			0.0			0.0	
		1.6			1.6			1.6			1.6	
Crosswalk Width(m)		1.0			1.0			1.0			1.0	
Two way Left Turn Lane	1.16	1.23	1.16	1.16	1.23	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Headway Factor	1.16	1.23	1.10	24	1.23	1.16	24	1.10	1.10	1.16	1.10	
Turning Speed (k/h)		_	14		0	14	= "	0	14	= -	_	14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA			NA					Perm	NA	

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 35 Lanes, Volumes, Timings

1851: King St & S	Sudbury S	St									09/	30/202
	۶	→	•	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	24.0	24.0		24.0	24.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	30.0	30.0		30.0	30.0		26.0	26.0		26.0	26.0	
Total Split (s)	50.0	50.0		50.0	50.0		30.0	30.0		30.0	30.0	
Total Split (%)	62.5%	62.5%		62.5%	62.5%		37.5%	37.5%		37.5%	37.5%	
Maximum Green (s)	44.0	44.0		44.0	44.0		25.0	25.0		25.0	25.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	17.0	17.0		17.0	17.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		25	25		30	30		19	19	
Act Effct Green (s)		48.4			48.4						22.6	
Actuated g/C Ratio		0.60			0.60						0.28	
v/c Ratio		0.44			0.58						0.53	
Control Delay		9.8			11.2						23.6	
Queue Delay		0.0			0.0						0.0	
Total Delay		9.8			11.2						23.6	
LOS		Α			В						С	
Approach Delay		9.8			11.2						23.6	
Approach LOS		Α			В						С	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 80												
Actuated Cycle Length: 8	80											
Offset: 1 (1%), Reference		·FRTI and	16·WRTI	Start of	1st Green							
Natural Cycle: 60	54 to pridoo 2			., σιαπτοι	101 01001							
Control Type: Actuated-C	Coordinated											
Maximum v/c Ratio: 0.58												
Intersection Signal Delay				- I	ntersection	LOS: B						
Intersection Capacity Util		,			CU Level							
Analysis Period (min) 15					2.5 20.01							
. ,												
Splits and Phases: 18	51: King St &	Sudbury S	St									
. A.							1					

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

1851: King St & Sudbury St

09/30/2021

	-	•	¥
Lane Group	EBT	WBT	SBT
Lane Group Flow (vph)	727	907	177
v/c Ratio	0.44	0.58	0.53
Control Delay	9.8	11.2	23.6
Queue Delay	0.0	0.0	0.0
Total Delay	9.8	11.2	23.6
Queue Length 50th (m)	27.5	37.1	15.9
Queue Length 95th (m)	43.7	59.0	33.7
Internal Link Dist (m)	294.4	175.1	172.7
Turn Bay Length (m)			
Base Capacity (vph)	1637	1576	372
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.44	0.58	0.48
Intersection Summary			

HCM Signalized Intersection Capacity Analysis 1851: King St & Sudbury St

09/30/2021

	۶	→	•	•	-	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		475			413-			4			4	
Traffic Volume (vph)	0	705	0	0	764	115	0	0	0	97	0	75
Future Volume (vph)	0	705	0	0	764	115	0	0	0	97	0	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0						4.0	
Lane Util. Factor		0.95			0.95						1.00	
Frpb, ped/bikes		1.00			0.98						0.95	
Flpb, ped/bikes		1.00			1.00						0.96	
Frt		1.00			0.98						0.94	
Flt Protected		1.00			1.00						0.97	
Satd. Flow (prot)		2707			2586						1214	
Flt Permitted		1.00			1.00						0.83	
Satd. Flow (perm)		2707			2586						1041	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	0.07	727	0	0.07	788	119	0	0.07	0.07	100	0	77
RTOR Reduction (vph)	0	0	0	0	13	0	0	0	0	0	37	0
Lane Group Flow (vph)	0	727	0	0	894	0	0	0	0	0	140	0
Confl. Peds. (#/hr)	76		183	183		76	91		59	59		91
Confl. Bikes (#/hr)	10		100	100		4	01		00	00		01
Heavy Vehicles (%)	0%	13%	0%	0%	14%	12%	0%	0%	0%	17%	0%	16%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA			NA.					Perm	NA	
Protected Phases		2			6			8		I CIIII	4	
Permitted Phases	2			6	U		8	U		4		
Actuated Green, G (s)		47.4		U	47.4		U				21.6	
Effective Green, q (s)		48.4			48.4						22.6	
Actuated g/C Ratio		0.60			0.60						0.28	
Clearance Time (s)		6.0			6.0						5.0	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		1637			1564						294	
v/s Ratio Prot		0.27			c0.35						234	
v/s Ratio Perm		0.27			00.55						c0.13	
		0.44			0.57						0.48	
v/c Ratio		8.5			9.5						23.8	
Uniform Delay, d1		1.00			1.00							
Progression Factor		0.9			1.00						1.00	
Incremental Delay, d2		9.4			11.1						1.2 25.0	
Delay (s) Level of Service		9.4 A			11.1 B						25.0 C	
								0.0				
Approach Delay (s)		9.4			11.1			0.0			25.0	
Approach LOS		Α			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			11.8	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.54									
Actuated Cycle Length (s)			80.0	Sı	um of lost	time (s)			9.0			
Intersection Capacity Utilizatio	n		53.2%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 1912: Atlantic Ave & King St

	-	•	•	←	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† }			41	ሻ	7
Traffic Volume (vph)	453	285	2	624	255	270
Future Volume (vph)	453	285	2	624	255	270
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.0	3.0
Storage Length (m)	0.0	0.0	0.0	5.5	30.0	0.0
Storage Length (III) Storage Lanes		0.0	0.0		30.0	1
Taper Length (m)		U	2.5		2.5	<u> </u>
	0.0F	O OF	0.95	0 OF	1.00	1.00
Lane Util. Factor Ped Bike Factor	0.95 0.80	0.95	0.93	0.95	0.91	0.93
				1.00	0.91	
Frt	0.942				0.050	0.850
Fit Protected	0400			077.	0.950	4000
Satd. Flow (prot)	2192	0	0	2774	1486	1233
FIt Permitted				0.953	0.950	
Satd. Flow (perm)	2192	0	0	2643	1354	1149
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	268					33
Link Speed (k/h)	50			50	30	
Link Distance (m)	191.3			318.4	198.0	
Travel Time (s)	13.8			22.9	23.8	
Confl. Peds. (#/hr)		340	340		85	55
Confl. Bikes (#/hr)		1				
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	6%	3%	100%	10%	2%	10%
Bus Blockages (#/hr)	24	24	24	24	0	0
Adj. Flow (vph)	521	328	2	717	293	310
Shared Lane Traffic (%)	321	320	2	717	293	310
	849	0	0	719	293	310
Lane Group Flow (vph)		_	_			
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	1.6			1.6	1.6	
Two way Left Turn Lane						
Headway Factor	1.23	1.16	1.16	1.23	1.25	1.25
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (m)	30.5		6.1	30.5	6.1	6.1
Trailing Detector (m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Size(m)	1.8		6.1	1.8	6.1	6.1
	CI+Ex		CI+Ex	CI+Ex	Cl+Ex	Cl+Ex
Detector 1 Type	UI+EX		∪I+EX	UI+EX	UI+EX	OI+EX
Detector 1 Channel			^ ^			
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

	-	\rightarrow	•	•	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Perm	NA	Perm	Perm
Protected Phases	2			6		
Permitted Phases			6		8	8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	21.0		21.0	21.0	20.0	20.0
Minimum Split (s)	28.0		28.0	28.0	26.0	26.0
Total Split (s)	39.0		39.0	39.0	31.0	31.0
Total Split (%)	55.7%		55.7%	55.7%	44.3%	44.3%
Maximum Green (s)	32.0		32.0	32.0	25.0	25.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	3.0		3.0	3.0	2.0	2.0
Lost Time Adjust (s)	-1.0			-1.0	-1.0	-1.0
Total Lost Time (s)	6.0			6.0	5.0	5.0
Lead/Lag				2.0	2.0	2.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	C-Max		C-Max	C-Max	None	None
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	14.0		14.0	14.0	13.0	13.0
Pedestrian Calls (#/hr)	100		8	8	28	28
Act Effct Green (s)	35.5		Ť	35.5	23.5	23.5
Actuated g/C Ratio	0.51			0.51	0.34	0.34
v/c Ratio	0.68			0.54	0.64	0.76
Control Delay	12.4			14.1	26.7	31.7
Queue Delay	0.0			0.0	0.0	0.0
Total Delay	12.4			14.1	26.7	31.7
LOS	В			В.	20.7 C	C
Approach Delay	12.4			14.1	29.3	
Approach LOS	В.			В	C	
••	ь			В		
Intersection Summary						
Area Type:	CBD					
Cycle Length: 70						
Actuated Cycle Length:						
Offset: 6 (9%), Reference	ed to phase 2:E	BT and	6:WBTL,	Start of 1	st Green	
Natural Cycle: 60						
Control Type: Actuated-0						
Maximum v/c Ratio: 0.76	6					
Intersection Signal Delay	y: 17.7			li	ntersectio	n LOS: B
Intersection Capacity Uti				10	CU Level	of Service
Analysis Period (min) 15	5					
Splits and Phases: 19	12: Atlantic Ave	& King	St			

1912: Atlantic Ave & King St

09/30/2021

	-	•	1	-
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	849	719	293	310
v/c Ratio	0.68	0.54	0.64	0.76
Control Delay	12.4	14.1	26.7	31.7
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	12.4	14.1	26.7	31.7
Queue Length 50th (m)	27.4	31.5	31.8	31.7
Queue Length 95th (m)	47.0	47.0	50.7	#55.5
Internal Link Dist (m)	167.3	294.4	174.0	
Turn Bay Length (m)			30.0	
Base Capacity (vph)	1242	1338	502	447
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.68	0.54	0.58	0.69

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1912: Atlantic Ave & King St

09/30/2021

Movement EBT EBR WBL WBT NBL NBR	
Lane Configurations † 7	
Traffic Volume (vph) 453 285 2 624 255 270	
Future Volume (vph) 453 285 2 624 255 270	
Ideal Flow (vphpl) 1900 1900 1900 1900 1900	
Lane Width 3.5 3.5 3.5 3.0 3.0	
Total Lost time (s) 6.0 5.0 5.0 5.0	
Lane Util, Factor 0.95 0.95 1.00 1.00	
Frpb, ped/bikes 0.80 1.00 0.93	
Fipb, ped/bikes 1.00 1.00 0.91 1.00	
Frit 0.94 1.00 0.91	
Fit Protected 1.00 1.00 0.05	
Satd. Flow (prot) 2193 2773 1354 1149	
Fit Permitted 1.00 0.95 0.95 1.00	
Satd. Flow (perm) 2193 2643 1354 1149	
Peak-hour factor, PHF 0.87 0.87 0.87 0.87 0.87	
Adj. Flow (vph) 521 328 2 717 293 310	
RTOR Reduction (vph) 132 0 0 0 0 22	
Lane Group Flow (vph) 717 0 0 719 293 288	
Confl. Peds. (#/hr) 340 340 85 55	
Confl. Bikes (#/hr) 1	
Heavy Vehicles (%) 6% 3% 100% 10% 2% 10%	
Bus Blockages (#/hr) 24 24 24 0 0	
Turn Type NA Perm NA Perm Perm	
Protected Phases 2 6	
Permitted Phases 6 8 8	
Actuated Green, G (s) 34.5 22.5 22.5	
Effective Green, g (s) 35.5 35.5 23.5 23.5	
Actuated g/C Ratio 0.51 0.51 0.34 0.34	
Clearance Time (s) 7.0 7.0 6.0 6.0	
Vehicle Extension (s) 3.0 3.0 3.0	
Lane Grp Cap (vph) 1112 1340 454 385	
v/s Ratio Prot c0.33	
v/s Ratio Perm 0.27 0.22 c0.25	
v/c Ratio 0.64 0.54 0.65 0.75	
Uniform Delay, d1 12.6 11.7 19.7 20.6	
Progression Factor 1.00 1.00 1.00 1.00	
Incremental Delay, d2 2.9 1.5 3.1 7.8	
Delay (s) 15.5 13.2 22.9 28.4	
Level of Service B B C C	
Approach Delay (s) 15.5 13.2 25.7	
Approach LOS B C	
Intersection Summary	
HCM 2000 Control Delay 17.6 HCM 2000 Level of Service	В
HCM 2000 Volume to Capacity ratio 0.70	
Actuated Cycle Length (s) 70.0 Sum of lost time (s)	12.0
Intersection Capacity Utilization 59.5% ICU Level of Service	В
Analysis Period (min) 15	
c Critical Lane Group	

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

	•	-	•	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	41	†	1101	₩.	ODIN
Traffic Volume (vph)	0	647	907	131	93	23
Future Volume (vph)	0	647	907	131	93	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Ped Bike Factor	0.50	0.93	0.99	0.55	0.99	1.00
Frt Fred Bike Factor			0.981		0.99	
			0.901		0.973	
Fit Protected	0	2941	2858	0	1459	0
Satd. Flow (prot)	U	2941	2000	U		U
Fit Permitted	_	0044	2050	^	0.962	_
Satd. Flow (perm)	0	2941	2858	0	1459	0
Right Turn on Red			0.5	Yes	4.5	Yes
Satd. Flow (RTOR)			38		15	
Link Speed (k/h)		50	50		50	
Link Distance (m)		316.7	191.3		100.8	
Travel Time (s)		22.8	13.8		7.3	
Confl. Peds. (#/hr)	42			42		15
Confl. Bikes (#/hr)				19		
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	0%	4%	4%	0%	0%	39%
Bus Blockages (#/hr)	24	24	24	24	0.0	0
Adj. Flow (vph)	0	727	1019	147	104	26
Shared Lane Traffic (%)	U	121	1019	147	104	20
	0	727	1166	0	120	0
Lane Group Flow (vph)			1166		130	
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)		0.0	0.0		3.5	
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		1.6	1.6		1.6	
Two way Left Turn Lane						
Headway Factor	1.16	1.23	1.23	1.16	1.16	1.16
Turning Speed (k/h)	24			14	24	14
Number of Detectors	1	2	2		1	
Detector Template	Left	Thru	Thru		Left	
Leading Detector (m)	6.1	30.5	30.5		6.1	
	0.0	0.0	0.0		0.0	
Trailing Detector (m)						
Detector 1 Position(m)	0.0	0.0	0.0		0.0	
Detector 1 Size(m)	6.1	1.8	1.8		6.1	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	
Detector 2 Position(m)		28.7	28.7			
Detector 2 Size(m)		1.8	1.8			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel		A	<u>-</u> /\			
Detector 2 Extend (s)		0.0	0.0			
Turn Type		NA	NA		Perm	
rum rype		INA	INA		reiiil	

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements	
HDR Corporation	

Synchro 11 Report Page 43

	•	→	←	•	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Protected Phases		2	6				
Permitted Phases	2				8		
Detector Phase	2	2	6		8		
Switch Phase							
Minimum Initial (s)	20.0	20.0	20.0		18.0		
Minimum Split (s)	26.0	26.0	26.0		23.0		
Total Split (s)	55.0	55.0	55.0		25.0		
Total Split (%)	68.8%	68.8%	68.8%		31.3%		
Maximum Green (s)	49.0	49.0	49.0		20.0		
Yellow Time (s)	4.0	4.0	4.0		3.0		
All-Red Time (s)	2.0	2.0	2.0		2.0		
Lost Time Adjust (s)		-1.0	-1.0		-1.0		
Total Lost Time (s)		5.0	5.0		4.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0		3.0		
Recall Mode	C-Max	C-Max	None		None		
Walk Time (s)	7.0	7.0	7.0		7.0		
Flash Dont Walk (s)	13.0	13.0	13.0		11.0		
Pedestrian Calls (#/hr)	100	100	14		5		
Act Effct Green (s)		57.6	57.6		19.0		
Actuated g/C Ratio		0.72	0.72		0.24		
v/c Ratio		0.34	0.56		0.36		
Control Delay		6.3	8.3		25.9		
Queue Delay		0.0	0.0		0.0		
Total Delay		6.3	8.3		25.9		
LOS		A	A		C		
Approach Delay		6.3	8.3		25.9		
Approach LOS		Α	Α		С		
Intersection Summary							
Area Type:	CBD						
Cycle Length: 80							
Actuated Cycle Length: 80							
Offset: 1 (1%), Referenced	to phase 2:	EBTL, St	art of Gree	en			
Natural Cycle: 60							
Control Type: Actuated-Coo	ordinated						
Maximum v/c Ratio: 0.56							
Intersection Signal Delay: 8					ntersection	LOS: A	
Intersection Capacity Utiliza	ation 55.4%			1	CU Level o	of Service B	
Analysis Period (min) 15							
Splits and Phases: 2081:	King St &	Joe Shust	ter Way				
A	_		-				
→ Ø2 (R)							

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 2081: King St & Joe Shuster Way

2081: King St & Joe Shuster Way

09/30/2021

	-	•	-
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	727	1166	130
v/c Ratio	0.34	0.56	0.36
Control Delay	6.3	8.3	25.9
Queue Delay	0.0	0.0	0.0
Total Delay	6.3	8.3	25.9
Queue Length 50th (m)	23.6	46.1	14.5
Queue Length 95th (m)	32.3	62.3	29.1
Internal Link Dist (m)	292.7	167.3	76.8
Turn Bay Length (m)			
Base Capacity (vph)	2117	2068	394
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.34	0.56	0.33
Intersection Summary			

HCM Signalized Intersection Capacity Analysis

2081: King St & Joe Shuster Way

09/30/2021

	•	-	←	•	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		414	↑ 1>		¥		
Traffic Volume (vph)	0	647	907	131	93	23	
Future Volume (vph)	0	647	907	131	93	23	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0	5.0		4.0		
Lane Util. Factor		0.95	0.95		1.00		
Frpb, ped/bikes		1.00	0.99		0.99		
Flpb, ped/bikes		1.00	1.00		1.00		
Frt		1.00	0.98		0.97		
Flt Protected		1.00	1.00		0.96		
Satd. Flow (prot)		2941	2859		1458		
FIt Permitted		1.00	1.00		0.96		
Satd. Flow (perm)		2941	2859		1458		
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	_
Adj. Flow (vph)	0	727	1019	147	104	26	
RTOR Reduction (vph)	0	0	12	0	12	0	
Lane Group Flow (vph)	0	727	1154	0	118	0	
Confl. Peds. (#/hr)	42			42		15	
Confl. Bikes (#/hr)				19			
Heavy Vehicles (%)	0%	4%	4%	0%	0%	39%	
Bus Blockages (#/hr)	24	24	24	24	0	0	
Turn Type		NA	NA		Perm		
Protected Phases		2	6				
Permitted Phases	2				8		
Actuated Green, G (s)		54.6	54.6		14.4		
Effective Green, g (s)		55.6	55.6		15.4		
Actuated g/C Ratio		0.70	0.70		0.19		
Clearance Time (s)		6.0	6.0		5.0		
Vehicle Extension (s)		3.0	3.0		3.0		
Lane Grp Cap (vph)		2043	1987		280		
v/s Ratio Prot		0.25	c0.40				
v/s Ratio Perm					c0.08		
v/c Ratio		0.36	0.58		0.42		
Uniform Delay, d1		4.9	6.2		28.4		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		0.5	0.4		1.0		
Delay (s)		5.4	6.7		29.4		
Level of Service		Α	Α		С		
Approach Delay (s)		5.4	6.7		29.4		
Approach LOS		Α	Α		С		
Intersection Summary							
HCM 2000 Control Delay			7.7	Н	CM 2000	Level of Service	Α
HCM 2000 Volume to Capaci	ty ratio		0.55				
Actuated Cycle Length (s)			80.0	Sı	um of lost	time (s)	10.0
Intersection Capacity Utilization	on		55.4%		U Level o		В
Analysis Period (min)			15				
c Critical Lane Group							

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	•	†	/	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	<u> </u>	7	*	<u> </u>
Traffic Volume (vph)	56	227	732	21	86	824
Future Volume (vph)	56	227	732	21	86	824
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.0	3.5	3.0	3.0	3.5
Storage Length (m)	30.0	0.0	0.0	15.0	30.0	0.0
Storage Lanes	1	1		13.0	1	
Taper Length (m)	2.5				2.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.86	1.00	0.94	1.00	1.00
Frt						
	0.950	0.850		0.850	0.950	
Fit Protected		4204	4040	4507		4040
Satd. Flow (prot)	1685	1304	1842	1507	1478	1842
Flt Permitted	0.950	4400	10.15	4446	0.159	10.15
Satd. Flow (perm)	1685	1122	1842	1416	247	1842
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		94		7		
Link Speed (k/h)	30		30			30
Link Distance (m)	148.7		265.9			191.3
Travel Time (s)	17.8		31.9			23.0
Confl. Peds. (#/hr)				27	27	
Confl. Bikes (#/hr)		117		2		
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	0%	11%	2%	0%	14%	2%
Bus Blockages (#/hr)	0	10	0	0	0	0
Adj. Flow (vph)	63	255	822	24	97	926
Shared Lane Traffic (%)	00	200	OLL		01	020
Lane Group Flow (vph)	63	255	822	24	97	926
Enter Blocked Intersection	No	No	No	No.	No	No
	Left		Left		Left	Left
Lane Alignment		Right		Right	Leπ	
Median Width(m)	3.0		3.0			3.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	1.6		1.6			1.6
Two way Left Turn Lane						
Headway Factor	1.09	1.15	1.01	1.09	1.09	1.01
Turning Speed (k/h)	24	14		14	24	
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (m)	6.1	6.1	30.5	6.1	6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	6.1	1.8	6.1	6.1	1.8
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex
Detector 1 Type Detector 1 Channel	CITEX	OITEX	OITEX	OITEX	OI+EX	OITEX
	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)			28.7			28.7
Detector 2 Size(m)			1.8			1.8

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 47

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

	•	•	†	/	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Detector 2 Type			Cl+Ex			CI+Ex
Detector 2 Channel						
Detector 2 Extend (s)			0.0			0.0
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA
Protected Phases		1	2		1	6
Permitted Phases	8	8		2	6	
Detector Phase	8	1	2	2	1	6
Switch Phase						
Minimum Initial (s)	21.0	6.0	27.0	27.0	6.0	27.0
Minimum Split (s)	26.0	10.0	34.0	34.0	10.0	34.0
Total Split (s)	26.0	10.0	44.0	44.0	10.0	54.0
Total Split (%)	32.5%	12.5%	55.0%	55.0%	12.5%	67.5%
Maximum Green (s)	21.0	6.0	37.0	37.0	6.0	47.0
Yellow Time (s)	3.0	3.0	4.0	4.0	3.0	4.0
All-Red Time (s)	2.0	1.0	3.0	3.0	1.0	3.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)	4.0	3.0	6.0	6.0	3.0	6.0
Lead/Lag		Lead	Lag	Lag	Lead	
Lead-Lag Optimize?			J	J		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	C-Max	C-Max	None	C-Max
Walk Time (s)	7.0		7.0	7.0		0.0
Flash Dont Walk (s)	14.0		20.0	20.0		0.0
Pedestrian Calls (#/hr)	0		9	9		0
Act Effct Green (s)	22.0	22.3	46.9	46.9	61.4	60.8
Actuated g/C Ratio	0.28	0.28	0.59	0.59	0.77	0.76
v/c Ratio	0.14	0.64	0.76	0.03	0.30	0.66
Control Delay	22.9	20.4	22.8	9.1	7.4	13.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.1
Total Delay	22.9	20.4	22.8	9.1	7.4	13.3
LOS	C	С	C	Α	Α	В
Approach Delay	20.9	-	22.4			12.7
Approach LOS	С		С			В
Intersection Summary						
Area Type:	Other					
Cycle Length: 80	Outo					
Actuated Cycle Length: 8	0					
Offset: 31 (39%), Referen		2·NRT a	nd 6:SBT	1 Start o	f 1st Gree	en en
Natural Cycle: 80	lood to pridoc		110 0.0D1	L, Otari o	1 100 0100	,,,
Control Type: Actuated-C	oordinated					
Maximum v/c Ratio: 0.76	ooramatoa					
Intersection Signal Delay:	17.7			l.	torcoctio	n LOS: B
Intersection Capacity Utili						of Service
Analysis Period (min) 15	ZudUII 1 Z.1 /0			I	JO LEVEI	OI OCI VICE
Analysis i enou (min) 13						
Splits and Phases: 213	4: British Col	ombia Ro	l/Dufferin	St & Sasi	katchewa	n Rd
14. A	T. BIILIOIT CO.	01110101111	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	01 0 000		

2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	•	†	/	/	. ↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	63	255	822	24	97	926
v/c Ratio	0.14	0.64	0.76	0.03	0.30	0.66
Control Delay	22.9	20.4	22.8	9.1	7.4	13.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.1
Total Delay	22.9	20.4	22.8	9.1	7.4	13.3
Queue Length 50th (m)	7.2	15.9	112.9	1.3	5.1	102.3
Queue Length 95th (m)	16.0	33.9	#184.8	4.9	10.2	#164.9
Internal Link Dist (m)	124.7		241.9			167.3
Turn Bay Length (m)	30.0			15.0	30.0	
Base Capacity (vph)	463	399	1080	833	319	1400
Starvation Cap Reductn	0	0	0	0	0	52
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.14	0.64	0.76	0.03	0.30	0.69

Intersection Summary # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	•	†	/	\	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*	1	*	7	*	*	
Traffic Volume (vph)	56	227	732	21	86	824	
Future Volume (vph)	56	227	732	21	86	824	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	3.0	3.0	3.5	3.0	3.0	3.5	
Total Lost time (s)	4.0	3.0	6.0	6.0	3.0	6.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	0.89	1.00	0.94	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.85	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1685	1162	1842	1416	1477	1842	
FIt Permitted	0.95	1.00	1.00	1.00	0.16	1.00	
Satd. Flow (perm)	1685	1162	1842	1416	247	1842	
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	
Adj. Flow (vph)	63	255	822	24	97	926	
RTOR Reduction (vph)	0	68	0	3	0	0	
Lane Group Flow (vph)	63	187	822	21	97	926	
Confl. Peds. (#/hr)	00		022	27	27	020	
Confl. Bikes (#/hr)		117		2			
Heavy Vehicles (%)	0%	11%	2%	0%	14%	2%	
Bus Blockages (#/hr)	0	10	0	0	0	0	
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA	
Protected Phases	1 01111	1	2	1 01111	1	6	
Permitted Phases	8	8	_	2	6	•	
Actuated Green, G (s)	12.6	20.1	43.9	43.9	55.4	55.4	
Effective Green, g (s)	13.6	22.1	44.9	44.9	56.4	56.4	
Actuated g/C Ratio	0.17	0.28	0.56	0.56	0.70	0.70	
Clearance Time (s)	5.0	4.0	7.0	7.0	4.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	286	321	1033	794	304	1298	
v/s Ratio Prot	200	c0.06	c0.45	104	0.03	c0.50	
v/s Ratio Perm	0.04	0.10	UU.7U	0.01	0.03	50.00	
v/c Ratio	0.22	0.58	0.80	0.03	0.13	0.71	
Uniform Delay, d1	28.6	25.0	13.9	7.8	9.0	7.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4	2.7	6.3	0.1	0.6	3.4	
Delay (s)	29.0	27.7	20.3	7.9	9.7	10.4	
Level of Service	C	C	C	A	A	В	
Approach Delay (s)	27.9		19.9	- '`	- ' '	10.3	
Approach LOS	C		В			В	
Intersection Summary							
HCM 2000 Control Delay			16.6	Ц	CM 2000	Level of Serv	vice B
HCM 2000 Control Delay	city ratio		0.76	П	CIVI 2000	reveror serv	vice D
Actuated Cycle Length (s)	orly ratio		80.0	c	um of lost	time (c)	14.0
Intersection Capacity Utiliza	tion		72.7%		CU Level		14.0 C
Analysis Period (min)	uon		12.1%	10	O Level (JI JEI VICE	U
c Critical Lane Group			13				
C Official Larie Group							

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

3023. New Liberty	<u> </u>			_		,
	•	-	•	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	₩D1	TTUI	₩ W	יוםטי
Traffic Volume (vph)	9	159	42	15	93	78
Future Volume (vph)	9	159	42	15	93	78
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.97	0.83	1.00	0.60	1.00
Frt		0.57	0.964		0.938	
Fit Protected		0.997	0.904		0.938	
Satd. Flow (prot)	0	1734	1467	0	1458	0
Satd. Flow (prot) FIt Permitted	U	0.989	140/	U	0.974	U
	0	1666	1467	0	1002	0
Satd. Flow (perm)	0	0001	140/	Yes	1002	Yes
Right Turn on Red			17	res	0	res
Satd. Flow (RTOR)		40	17		2	
Link Speed (k/h)		40	40		50	
Link Distance (m)		87.6	198.4		42.4	
Travel Time (s)		7.9	17.9		3.1	
Confl. Peds. (#/hr)	871			871	636	200
Confl. Bikes (#/hr)				14		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Bus Blockages (#/hr)	0	14	0	0	0	0
Adj. Flow (vph)	10	177	47	17	103	87
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	187	64	0	190	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)		0.0	0.0	J	3.5	J
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		1.6	1.6		1.6	
Two way Left Turn Lane		0				
Headway Factor	1.01	1.09	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	1.03	1.01	1.01	24	1.01
Number of Detectors	1	2	2	14	1	14
Detector Template	Left	Thru	Thru		Left	
Leading Detector (m)	6.1	30.5	30.5		6.1	
Trailing Detector (m)	0.0		0.0		0.0	
	0.0	0.0	0.0		0.0	
Detector 1 Position(m)		0.0				
Detector 1 Size(m)	6.1	1.8	1.8		6.1	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	
Detector 2 Position(m)		28.7	28.7			
Detector 2 Size(m)		1.8	1.8			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel						
Detector 2 Extend (s)		0.0	0.0			
Turn Type	Perm	NA	NA		Perm	
Protected Phases		2	6			
.0.00.00 1 110000		2	0			

Scenario 1 Future Background PM 11:59 pm 05/05/201	4 No Improvements
HDR Corporation	

Synchro 11 Report Page 51

Lane Group Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (y6) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	2 2 7.0 24.0 26.0 52.0% 20.0 4.0 2.0 C-Max 7.0	7.0 24.0 26.0 52.0% 20.0 4.0 2.0 -1.0 5.0	6 7.0 24.0 26.0 52.0% 20.0 4.0 2.0 -1.0 5.0	WBR	7.0 24.0 24.0 48.0% 18.0 4.0 2.0 -1.0 5.0	SBR		
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (y) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr)	2 7.0 24.0 26.0 52.0% 20.0 4.0 2.0	7.0 24.0 26.0 52.0% 20.0 4.0 2.0 -1.0 5.0	7.0 24.0 26.0 52.0% 20.0 4.0 2.0 -1.0		7.0 24.0 24.0 48.0% 18.0 4.0 2.0 -1.0			
Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr)	7.0 24.0 26.0 52.0% 20.0 4.0 2.0	7.0 24.0 26.0 52.0% 20.0 4.0 2.0 -1.0 5.0	7.0 24.0 26.0 52.0% 20.0 4.0 2.0 -1.0		7.0 24.0 24.0 48.0% 18.0 4.0 2.0 -1.0			
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	24.0 26.0 52.0% 20.0 4.0 2.0 3.0 C-Max	24.0 26.0 52.0% 20.0 4.0 2.0 -1.0 5.0	24.0 26.0 52.0% 20.0 4.0 2.0 -1.0		24.0 24.0 48.0% 18.0 4.0 2.0 -1.0			
Minimum Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Fleash Dont Walk (s) Pedestrian Calls (#/hr)	24.0 26.0 52.0% 20.0 4.0 2.0 3.0 C-Max	24.0 26.0 52.0% 20.0 4.0 2.0 -1.0 5.0	24.0 26.0 52.0% 20.0 4.0 2.0 -1.0		24.0 24.0 48.0% 18.0 4.0 2.0 -1.0			
Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	26.0 52.0% 20.0 4.0 2.0 3.0 C-Max	26.0 52.0% 20.0 4.0 2.0 -1.0 5.0	26.0 52.0% 20.0 4.0 2.0 -1.0		24.0 48.0% 18.0 4.0 2.0 -1.0			
Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	26.0 52.0% 20.0 4.0 2.0 3.0 C-Max	26.0 52.0% 20.0 4.0 2.0 -1.0 5.0	26.0 52.0% 20.0 4.0 2.0 -1.0		24.0 48.0% 18.0 4.0 2.0 -1.0			
Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	52.0% 20.0 4.0 2.0 3.0 C-Max	52.0% 20.0 4.0 2.0 -1.0 5.0	52.0% 20.0 4.0 2.0 -1.0		48.0% 18.0 4.0 2.0 -1.0			
Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	20.0 4.0 2.0 3.0 C-Max	20.0 4.0 2.0 -1.0 5.0	20.0 4.0 2.0 -1.0		18.0 4.0 2.0 -1.0			
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	3.0 C-Max	4.0 2.0 -1.0 5.0	4.0 2.0 -1.0		4.0 2.0 -1.0			
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead/Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	3.0 C-Max	2.0 -1.0 5.0	2.0 -1.0		2.0 -1.0			
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	3.0 C-Max	-1.0 5.0	-1.0		-1.0			
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	C-Max	5.0						
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	C-Max		5.0		5.0			
Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	C-Max	3.0						
Vehicle Extension (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	C-Max	3.0						
Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)	C-Max		3.0		3.0			
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr)		C-Max	C-Max		None			
Flash Dont Walk (s) Pedestrian Calls (#/hr)		7.0	7.0		7.0			
Pedestrian Calls (#/hr)	11.0	11.0	11.0		11.0			
	100	100	100		100			
	100							
Act Effct Green (s)		28.1	28.1		15.6			
Actuated g/C Ratio		0.56	0.56		0.31			
v/c Ratio		0.20	0.08		0.61			
Control Delay		9.5	7.3		22.2			
Queue Delay		0.0	0.0		0.0			
Total Delay		9.5	7.3		22.2			
LOS		Α	Α		С			
Approach Delay		9.5	7.3		22.2			
Approach LOS		Α	Α		С			
Intersection Summary								
Area Type:	Other							
Cycle Length: 50								
Actuated Cycle Length: 50	J							
Offset: 0 (0%), Reference	d to phase 2:	EBTL and	d 6:WBT,	Start of Gr	reen			
Natural Cycle: 50								
Control Type: Actuated-Co	oordinated							
Maximum v/c Ratio: 0.61								
Intersection Signal Delay:	14.6			Int	tersection	LOS: B		
Intersection Capacity Utiliz	zation 38.9%			ICI	U Level o	of Service A		
Analysis Period (min) 15								
Splits and Phases: 902	3: New Libert	tv St & At	tlantic Ave					
A	<u> </u>	. , 0. a .				la.		
→ Ø2 (R)					24-	Ø4		
26 S					24 s			
Ø6 (R)								

Lanes, Volumes, Timings 9023: New Liberty St & Atlantic Ave

9023: New Liberty St & Atlantic Ave

09/30/2021

	-	-	-
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	187	64	190
v/c Ratio	0.20	0.08	0.61
Control Delay	9.5	7.3	22.2
Queue Delay	0.0	0.0	0.0
Total Delay	9.5	7.3	22.2
Queue Length 50th (m)	10.3	2.4	12.2
Queue Length 95th (m)	20.8	7.6	27.5
Internal Link Dist (m)	63.6	174.4	18.4
Turn Bay Length (m)			
Base Capacity (vph)	935	831	382
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.20	0.08	0.50
Intersection Summary			

HCM Signalized Intersection Capacity Analysis 9023: New Liberty St & Atlantic Ave

	•	-	•	•	1	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		4	1>		¥			
Fraffic Volume (vph)	9	159	42	15	93	78		
Future Volume (vph)	9	159	42	15	93	78		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		5.0	5.0		5.0			
Lane Util, Factor		1.00	1.00		1.00			
Frpb, ped/bikes		1.00	0.83		0.87			
Flpb, ped/bikes		0.97	1.00		0.69			
Frt		1.00	0.96		0.94			
Flt Protected		1.00	1.00		0.97			
Satd. Flow (prot)		1680	1468		1002			
FIt Permitted		0.99	1.00		0.97			
Satd. Flow (perm)		1666	1468		1002			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	10	177	47	17	103	87		
RTOR Reduction (vph)	0	0	8	0	1	0		
Lane Group Flow (vph)	0	187	56	0	189	0		
Confl. Peds. (#/hr)	871			871	636	200		
Confl. Bikes (#/hr)				14				
Bus Blockages (#/hr)	0	14	0	0	0	0		
Turn Type	Perm	NA	NA		Perm			
Protected Phases		2	6					
Permitted Phases	2	_			4			
Actuated Green, G (s)		24.9	24.9		13.1			
Effective Green, g (s)		25.9	25.9		14.1			
Actuated g/C Ratio		0.52	0.52		0.28			
Clearance Time (s)		6.0	6.0		6.0			
Vehicle Extension (s)		3.0	3.0		3.0			
Lane Grp Cap (vph)		862	760		282			
//s Ratio Prot		- · · · -	0.04					
//s Ratio Perm		c0.11			c0.19			
//c Ratio		0.22	0.07		0.67			
Uniform Delay, d1		6.5	6.0		15.9			
Progression Factor		1.00	1.00		1.00			
Incremental Delay, d2		0.6	0.2		5.9			
Delay (s)		7.1	6.2		21.8			
Level of Service		Α	Α		С			
Approach Delay (s)		7.1	6.2		21.8			
Approach LOS		Α	Α		С			
Intersection Summary								
HCM 2000 Control Delay			13.3	H	CM 2000	Level of Service	9	В
HCM 2000 Volume to Capa	acity ratio		0.39					
Actuated Cycle Length (s)			50.0	Sı	um of lost	time (s)	11	.0
Intersection Capacity Utiliza	ation		38.9%	IC	U Level c	of Service		Α
Analysis Period (min)			15					
Critical Lane Group								

Lanes, Volumes, Timings 9024: Dufferin St & New Liberty St

09/30/2021

	•	•	†	1	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	1		*	<u> </u>
Traffic Volume (vph)	162	53	828	158	12	768
Future Volume (vph)	162	53	828	158	12	768
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0	0.0	1000	0.0	0.0	1000
Storage Lanes	13.0	1		0.0	1	
	2.5			U	2.5	
Taper Length (m) Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.79	0.98	1.00	1.00	1.00
Frt		0.79				
	0.050	0.830	0.978		0.950	
Fit Protected	0.950	1500	1766	^		1040
Satd. Flow (prot)	1750	1566	1766	0	1750	1842
Flt Permitted	0.950	10.15	4705	_	0.134	10.15
Satd. Flow (perm)	1750	1240	1766	0	247	1842
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		58	24			
Link Speed (k/h)	40		30			30
Link Distance (m)	107.6		191.3			74.7
Travel Time (s)	9.7		23.0			9.0
Confl. Peds. (#/hr)		137				
Confl. Bikes (#/hr)		2		118		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	180	59	920	176	13	853
Shared Lane Traffic (%)						
Lane Group Flow (vph)	180	59	1096	0	13	853
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5	rugiic	3.5	rugiit	Loit	3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	1.6		1.6			1.6
(/	1.0		1.0			1.0
Two way Left Turn Lane	1.04	1.04	1.04	1.04	1.04	1.04
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	14		14	24	_
Number of Detectors	1	1	2		1	2
Detector Template	Left	Right	Thru		Left	Thru
Leading Detector (m)	6.1	6.1	30.5		6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	6.1	6.1	1.8		6.1	1.8
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel					-	-
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	0.0
Detector 2 Position(m)	0.0	0.0	28.7		0.0	28.7
Detector 2 Size(m)			1.8			1.8
			CI+Ex			CI+Ex
Detector 2 Type			∪I+EX			UI+EX
Detector 2 Channel			0.0			0.0
Detector 2 Extend (s)			0.0			0.0

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 55

Lanes, Volumes, Timings 9024: Dufferin St & New Liberty St

		ດ2	

	•	4	†	~	/	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Turn Type	Perm	Perm	NA		Perm	NA
Protected Phases			2			6
Permitted Phases	8	8			6	
Detector Phase	8	8	2		6	6
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0		7.0	7.0
Minimum Split (s)	24.0	24.0	24.0		24.0	24.0
Total Split (s)	24.0	24.0	26.0		26.0	26.0
Total Split (%)	48.0%	48.0%	52.0%		52.0%	52.0%
Maximum Green (s)	18.0	18.0	20.0		20.0	20.0
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0		-1.0	-1.0
Total Lost Time (s)	5.0	5.0	5.0		5.0	5.0
Lead/Lag	0.0	0.0	5.5		0.0	0.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	C-Max		C-Max	C-Max
Walk Time (s)	7.0	7.0	7.0		7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)	0	0	0		0	0
Act Effct Green (s)	11.5	11.5	32.1		32.1	32.1
Actuated g/C Ratio	0.23	0.23	0.64		0.64	0.64
v/c Ratio	0.45	0.18	0.96		0.04	0.72
Control Delay	19.4	6.2	36.2		8.1	15.7
Queue Delay	0.0	0.0	0.0		0.0	0.0
Total Delay	19.4	6.2	36.2		8.1	15.7
LOS	13.4 B	0.2 A	J0.2		Α.	13.7 B
Approach Delay	16.1	^	36.2		^	15.6
Approach LOS	10.1 B		30.2 D			15.0 B
• • • • • • • • • • • • • • • • • • • •	٥		U			D
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 0 (0%), Referenced	I to phase 2:	NBT and	6:SBTL, S	Start of G	reen	
Natural Cycle: 80						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.96						
Intersection Signal Delay:				In	tersectio	n LOS: C
Intersection Capacity Utiliz	ation 76.5%			IC	U Level	of Service
Analysis Period (min) 15						
Splits and Phases: 9024	: Dufferin St	& New L	iberty St			
↑						
Ø2 (R)						
26 s						
Ø6 (R)						Ø8
7 20 (K)			_		2.4	+ 20

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

9024: Dufferin St & New Liberty St

09/30/2021

	•	•	†	-	↓
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	180	59	1096	13	853
v/c Ratio	0.45	0.18	0.96	0.08	0.72
Control Delay	19.4	6.2	36.2	8.1	15.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	19.4	6.2	36.2	8.1	15.7
Queue Length 50th (m)	13.8	0.1	~113.5	0.4	51.8
Queue Length 95th (m)	24.6	5.9	#190.0	3.0	#132.6
Internal Link Dist (m)	83.6		167.3		50.7
Turn Bay Length (m)	15.0				
Base Capacity (vph)	665	507	1141	158	1181
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.27	0.12	0.96	0.08	0.72

HCM Signalized Intersection Capacity Analysis 9024: Dufferin St & New Liberty St

	•	•	†	/	>	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	- 1>		ሻ	↑	
Traffic Volume (vph)	162	53	828	158	12	768	
Future Volume (vph)	162	53	828	158	12	768	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0	5.0		5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.79	0.99		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.85	0.98		1.00	1.00	
Flt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1750	1238	1775		1750	1842	
Flt Permitted	0.95	1.00	1.00		0.13	1.00	
Satd. Flow (perm)	1750	1238	1775		246	1842	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	180	59	920	176	13	853	
RTOR Reduction (vph)	0	46	10	0	0	0	
Lane Group Flow (vph)	180	13	1086	0	13	853	
Confl. Peds. (#/hr)		137		446			
Confl. Bikes (#/hr)		2		118			
Turn Type	Perm	Perm	NA		Perm	NA	
Protected Phases	^	•	2		•	6	
Permitted Phases	8	8	00.0		6	00.0	
Actuated Green, G (s)	9.1	9.1	28.9		28.9	28.9	
Effective Green, g (s)	10.1	10.1	29.9		29.9	29.9	
Actuated g/C Ratio	0.20	0.20	0.60		0.60	0.60	
Clearance Time (s)	6.0	6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	353	250	1061		147	1101	
v/s Ratio Prot	-0.40	0.04	c0.61		0.05	0.46	
v/s Ratio Perm	c0.10	0.01	4.00		0.05	0.77	
v/c Ratio	0.51	0.05	1.02		0.09	0.77	
Uniform Delay, d1	17.7	16.1	10.1		4.3	7.5	
Progression Factor	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.2 18.9	0.1 16.2	33.8		1.2	5.3	
Delay (s)	18.9 B	16.2 B	43.9 D		5.5	12.9 B	
Level of Service	18.2	В	43.9		Α		
Approach LOS	18.2 B		43.9 D			12.8 B	
Approach LOS	В		U			Б	
Intersection Summary							
HCM 2000 Control Delay			28.9	H	CM 2000	Level of Service) (
HCM 2000 Volume to Capa	acity ratio		0.92				
Actuated Cycle Length (s)			50.0		um of lost	(-)	11.
Intersection Capacity Utiliz	ation		76.5%	IC	U Level c	of Service	l l
Analysis Period (min)			15				

c Critical Lane Group

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	•	1	†	↓ .	4
Movement	EBL	EBR	NBL	NBT	SBT :	SBR
Lane Configurations	*	7			†	
Traffic Volume (veh/h)	0	228	0	720	670	41
Future Volume (Veh/h)	0	228	0	720	670	41
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	253	0	800	744	46
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				241		
pX, platoon unblocked	0.71					
vC, conflicting volume	1567	767	790			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1594	767	790			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	37	100			
cM capacity (veh/h)	84	402	830			
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	SB 1	
		253	0	800	790	
Volume Total	0		-			
Volume Left	0	0 253	0	0	0 46	
Volume Right		402	1700	-	1700	
cSH	1700			1700		
Volume to Capacity	0.00	0.63	0.00	0.47	0.46	
Queue Length 95th (m)	0.0	31.6	0.0	0.0	0.0	
Control Delay (s)	0.0	28.0	0.0	0.0	0.0	
Lane LOS	A	D				
Approach Delay (s)	28.0		0.0		0.0	
Approach LOS	D					
Intersection Summary						
Average Delay			3.8			
Intersection Capacity Utiliza	ation		58.5%	IC	CU Level of S	Service
Analysis Period (min)			15			
- , ,						

	-	*	7	ı	*	•
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	٦	†	†	
Traffic Volume (vph)	0	228	0	720	670	41
Future Volume (vph)	0	228	0	720	670	41
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0	0.0	15.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	2.5		2.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850			0.992	
Flt Protected						
Satd. Flow (prot)	1842	1566	1842	1842	1827	0
Flt Permitted						
Satd. Flow (perm)	1842	1566	1842	1842	1827	0
Link Speed (k/h)	40			40	40	
Link Distance (m)	579.0			241.4	424.1	
Travel Time (s)	52.1			21.7	38.2	
Confl. Bikes (#/hr)						18
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	253	0	800	744	46
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	253	0	800	790	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	1.6			1.6	1.6	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	14	24			14
Sign Control	Stop			Free	Free	
Intersection Summary		_	_	_	_	
	011					
	Other					
Control Type: Unsignalized	# FO FO				NIII 1	
Intersection Capacity Utiliza	tion 58.5%			IC	U Level (of Service I
Analysis Period (min) 15						

Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 59 Scenario 1 Future Background PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Scenario 1 Future Background PM 11:59 pm 05/05/2014 With Improvements	
HDR Corporation	

Synchro 11 Report Page 1

Long Croup	Ø10	Ø12	Ø14	Ø16
Lane Group	טוש	WIZ	W14	סוש
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Ideal Flow (vphpl)				
Lane Width (m)				
Storage Length (m)				
Storage Lanes				
Taper Length (m)				
Lane Util. Factor				
Ped Bike Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (k/h)				
Link Distance (m)				
Travel Time (s)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Heavy Vehicles (%)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(m)				
Link Offset(m)				
Crosswalk Width(m)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (k/h)				
Number of Detectors				
Detector Template				
Leading Detector (m)				
Trailing Detector (m)				
Detector 1 Position(m)				
Detector 1 Size(m)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Detector 2 Position(m)				
Detector 2 Size(m)				
Detector 2 Type				

Scenario 1 Future Background PM 11:59 pm 05/05/2014 With Improvements HDR Corporation

Synchro 11 Report Page 2

Scenario 1 Future Background PM 11:59 pm 05/05/2014 With Improvements

HDR Corporation

Synchro 11 Report

Page 3

	۶	-	\rightarrow	•	•	4	4	†	1	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	5	2		6	6	
Switch Phase												
Minimum Initial (s)	32.0	32.0		32.0	32.0	32.0	7.0	29.0		29.0	29.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	14.0	36.0		36.0	36.0	
Total Split (s)	39.0	39.0		39.0	39.0	39.0	14.0	71.0		57.0	57.0	
Total Split (%)	25.3%	25.3%		25.3%	25.3%	25.3%	9.1%	46.1%		37.0%	37.0%	
Maximum Green (s)	32.0	32.0		32.0	32.0	32.0	7.0	64.0		50.0	50.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	3.0		3.0	3.0	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	4.0		4.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0			-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0		7.0		7.0	7.0	
Flash Dont Walk (s)	25.0	25.0		25.0	25.0	25.0		22.0		22.0	22.0	
Pedestrian Calls (#/hr)	18	18		100	100	100		11		12	12	
Act Effct Green (s)	33.5	33.5			33.5	33.5	65.9	65.9		51.7	51.7	
Actuated g/C Ratio	0.27	0.27			0.27	0.27	0.54	0.54		0.42	0.42	
v/c Ratio	0.72	0.44			0.72	0.15	0.80	0.65		0.40	1.12	
Control Delay	64.2	9.0			60.7	0.7	56.8	26.7		35.4	106.0	
Queue Delay	0.0	0.0			0.0	0.0	0.0	1.1		0.0	0.0	
Total Delay	64.2	9.0			60.7	0.7	56.8	27.8		35.4	106.0	
LOS	Е	Α			Е	Α	Е	С		D	F	
Approach Delay		30.7			44.8			33.1			98.8	
Approach LOS		С			D			С			F	
Intersection Summary												
Area Type:	Other											
Cycle Length: 154												
Actuated Cycle Length: 12	22											
Natural Cycle: 145												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 1.12												
Intersection Signal Delay:	60.6			lı	ntersectio	n LOS: E						
Intersection Capacity Utiliz	zation 128.1°	%		10	CU Level	of Service	e H					
Analysis Period (min) 15												
Splits and Phases: 571:	Strachan A	ve & Cana	ıda Blvd/F									
¶ø2					∳k _{Ø10}					(Ø12	
71 s				2	2 s		39 s			22	ŚS	

LOS			
Approach Delay			
Approach LOS			
Intersection Summary			

Lanes, Volumes, Timings

Lane Group

Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases

Permitted Phases Detector Phase Switch Phase Minimum Initial (s)

Minimum Split (s)

Maximum Green (s)

Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s)

Total Split (s)

Total Split (%)

Yellow Time (s)

All-Red Time (s)

Recall Mode

Walk Time (s)

Flash Dont Walk (s)

Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay

Pedestrian Calls (#/hr)

571: Strachan Ave & Canada Blvd/Fleet St

7.0

22.0

14.0

4.0

4.0 4.0

3.0 3.0

None

0.0

0.0

22.0 22.0

14% 14%

Ø10 Ø12 Ø14 Ø16

10 12 14

7.0

22.0

14.0

4.0

None

0.0

0.0

16

7.0 7.0

22.0

22.0

14%

14.0

4.0

4.0 4.0

3.0

0.0

0.0 0.0

16

None None

22.0

22.0

14%

14.0

4.0

3.0

0.0

16

HDR Corporation

	•	-	—	•	4	†	-	ļ	
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	146	226	174	63	132	590	93	814	
v/c Ratio	0.72	0.44	0.72	0.15	0.80	0.65	0.40	1.12	
Control Delay	64.2	9.0	60.7	0.7	56.8	26.7	35.4	106.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	
Total Delay	64.2	9.0	60.7	0.7	56.8	27.8	35.4	106.0	
Queue Length 50th (m)	27.2	1.1	32.5	0.0	13.4	73.8	12.5	~186.5	
Queue Length 95th (m)	#77.2	23.7	#86.9	0.0	#62.7	178.5	38.3	#366.8	
Internal Link Dist (m)		119.4	205.0			181.6		217.4	
Turn Bay Length (m)	25.0			50.0	30.0		25.0		
Base Capacity (vph)	203	511	243	424	166	914	231	725	
Starvation Cap Reductn	0	0	0	0	0	141	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.44	0.72	0.15	0.80	0.76	0.40	1.12	

	•	→	•	•	+	•	1	†	/	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>			ર્ન	7	7	1>		Ť	14	
Traffic Volume (vph)	139	7	208	77	88	60	125	473	87	88	706	67
Future Volume (vph)	139	7	208	77	88	60	125	473	87	88	706	67
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.87			1.00	0.73	1.00	0.99		1.00	0.99	
Flpb, ped/bikes	0.82	1.00			0.97	1.00	1.00	1.00		0.97	1.00	
Frt	1.00	0.85			1.00	0.85	1.00	0.98		1.00	0.99	
Flt Protected	0.95	1.00			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1297	1314			1551	1105	1652	1689		1533	1711	
Flt Permitted	0.56	1.00			0.56	1.00	0.07	1.00		0.34	1.00	
Satd. Flow (perm)	763	1314			891	1105	120	1689		545	1711	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	146	7	219	81	93	63	132	498	92	93	743	71
RTOR Reduction (vph)	0	164	0	0	0	47	0	4	0	0	2	0
Lane Group Flow (vph)	146	62	0	0	174	16	132	586	0	93	812	0
Confl. Peds. (#/hr)	122		55	55		122	37		33	33		37
Confl. Bikes (#/hr)			3									2
Heavy Vehicles (%)	6%	12%	6%	1%	26%	0%	2%	8%	2%	7%	8%	1%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.4	32.4			32.4	32.4	64.9	64.9		50.8	50.8	
Effective Green, g (s)	33.4	33.4			33.4	33.4	65.9	65.9		51.8	51.8	
Actuated g/C Ratio	0.25	0.25			0.25	0.25	0.50	0.50		0.39	0.39	
Clearance Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	192	332			225	279	153	842		213	670	
v/s Ratio Prot		0.05					0.05	c0.35			c0.47	
v/s Ratio Perm	0.19				c0.20	0.01	0.37			0.17		
v/c Ratio	0.76	0.19			0.77	0.06	0.86	0.70		0.44	1.21	
Uniform Delay, d1	45.6	38.7			45.8	37.4	32.7	25.4		29.4	40.1	
Progression Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	24.3	1.2			22.4	0.4	36.2	4.7		6.4	108.9	
Delay (s)	69.9	40.0			68.2	37.8	68.9	30.2		35.8	149.1	
Level of Service	Е	D			Е	D	Е	С		D	F	
Approach Delay (s)		51.7			60.1			37.2			137.5	
Approach LOS		D			Е			D			F	
Intersection Summary												
HCM 2000 Control Delay			82.7	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		0.98									
Actuated Cycle Length (s)			132.1		um of lost	. ,			34.0			
Intersection Capacity Utiliza	tion		128.1%	IC	CU Level of	of Service)		Н			
Analysis Period (min)			15									
 c Critical Lane Group 												

Intersection Capacity Utilization	128.1%	ICU Level of Service	Н
Analysis Period (min)	15		
c Critical Lane Group			

HCM Signalized Intersection Capacity Analysis

571: Strachan Ave & Canada Blvd/Fleet St

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group

Lane Configurations Traffic Volume (vph) Future Volume (vph)

Ideal Flow (vphpl)

Storage Length (m)

Storage Lanes
Taper Length (m)

Lane Util. Factor

Ped Bike Factor

Satd. Flow (prot)

Satd. Flow (perm)

Right Turn on Red

Satd. Flow (RTOR)

Link Speed (k/h)

Link Distance (m)

Confl. Peds. (#/hr) Confl. Bikes (#/hr)

Peak Hour Factor

Shared Lane Traffic (%) Lane Group Flow (vph)

Enter Blocked Intersection

Adj. Flow (vph)

Lane Alignment

Median Width(m)

Crosswalk Width(m)

Turning Speed (k/h)

Number of Detectors

Leading Detector (m)

Trailing Detector (m)

Detector 1 Size(m)

Detector 1 Channel

Detector 1 Extend (s) Detector 1 Queue (s)

Detector 1 Delay (s)

Detector 2 Size(m)

Detector 2 Channel
Detector 2 Extend (s)

Detector 2 Type

Detector 2 Position(m)

Detector 1 Type

Detector 1 Position(m)

Detector Template

Two way Left Turn Lane Headway Factor

Link Offset(m)

Travel Time (s)

Flt Protected

Flt Permitted

162

1900

15.0

2.5

1.00

0.950

1750

0.950

1750

40

9.7

0.90

180

180

No

Left Right

3.5

0.0

1.01

24

1

Left Right

6.1

0.0

0.0

6.1

0.0

CI+Ex CI+Ex

107.6

53 828

1900

1.00

30

191.3

23.0

0.90

920

No

Left Right

3.5

0.0

1.6

1.01

Thru

0.0

0.0

1.8

0.0

0.0

28.7

1.8

0.0

CI+Ex

CI+Ex

1900

0.0

1.00

0.64 0.99 0.850 0.978

1566 1777

1005

Yes

2

0.90

59

59 1096

No

1.01

14

6.1 30.5

0.0

0.0

6.1

0.0

158

1900

0.0

1.00

Yes

118

0.90

176

0

No

1.01

SBT

1900

1.00

1842

1842

30

74.7

9.0

0.90

No

Left

3.5

0.0

1.6

1.01

6.1 30.5

0.0

0.0

1.8

0.0

0.0

28.7

1.8

0.0

CI+Ex

CI+Ex

12 768

1900

0.0

2.5

1.00

0.950

1750

0.131

241

0.90

13 853

13 853

No

Left

1.01

14 24

Left Thru

0.0

0.0

6.1

CI+Ex

0.0

0.0

Scenario 1 Future Background PM 11:59 pm 05/05/2014 With	n Improvements
HDR Corporation	

Synchro 11 Report Page 7 Lanes, Volumes, Timings

9024: Dufferin St & New Liberty St

U	91	J	U/	4	U.	_	

	•	•	†	~	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Turn Type	Perm	Perm	NA		Perm	NA
Protected Phases	. 0.111	. 0	2		. 0	6
Permitted Phases	8	8			6	
Detector Phase	8	8	2		6	6
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0		7.0	7.0
Minimum Split (s)	24.0	24.0	24.0		24.0	24.0
Total Split (s)	24.0	24.0	66.0		66.0	66.0
Total Split (%)	26.7%	26.7%	73.3%		73.3%	73.3%
Maximum Green (s)	18.0	18.0	60.0		60.0	60.0
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0		-1.0	-1.0
Total Lost Time (s)	5.0	5.0	5.0		5.0	5.0
Lead/Lag	5.0	5.0	5.0		5.0	5.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0
Recall Mode	None	None	C-Max		C-Max	C-Max
Walk Time (s)	7.0	7.0	7.0		7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)	0	0	0		0	0
Act Effct Green (s)	15.1	15.1	64.9		64.9	64.9
Actuated g/C Ratio	0.17	0.17	0.72		0.72	0.72
v/c Ratio	0.17	0.17	0.72		0.72	0.72
Control Delay	43.5	11.9	18.4		5.9	10.0
Queue Delay	0.0	0.0	3.8		0.0	0.0
Total Delay	43.5	11.9	22.2		5.9	10.0
LOS	D	В	C		Α	В
Approach Delay	35.7		22.2			9.9
Approach LOS	D		С			Α
Intersection Summary						
Area Type:	Other					
Cycle Length: 90	- 0.00					
Actuated Cycle Length: 90						
Offset: 0 (0%), Referenced		NBT and	6:SBTL S	Start of G	reen	
Natural Cycle: 80	p.1000 E.		3.03.2,0			
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.85						
Intersection Signal Delay:	18 9			In	tersection	n LOS: B
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15				ı	J LOVOI	J. OUI VIOE
raidiyolo i oriod (iriiri) 10						
Splits and Phases: 9024	l: Dufferin St	& New L	iberty St			
+			,			
Ø2 (R)						
66 s						
1 Pac (n)						
Ø6 (R)						
00 5						

Scenario 1 Future Background PM 11:59 pm 05/05/2014 With Improvements HDR Corporation

9024: Dufferin St & New Liberty St

09/30/2021

	•	•	†	-	.↓
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	180	59	1096	13	853
v/c Ratio	0.61	0.27	0.85	0.08	0.64
Control Delay	43.5	11.9	18.4	5.9	10.0
Queue Delay	0.0	0.0	3.8	0.0	0.0
Total Delay	43.5	11.9	22.2	5.9	10.0
Queue Length 50th (m)	29.0	0.0	114.5	0.6	65.5
Queue Length 95th (m)	47.3	9.7	#249.9	2.8	116.4
Internal Link Dist (m)	83.6		167.3		50.7
Turn Bay Length (m)	15.0				
Base Capacity (vph)	369	258	1288	173	1328
Starvation Cap Reductn	0	0	125	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.49	0.23	0.94	0.08	0.64
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 9024: Dufferin St & New Liberty St

	•	•	†	~	/	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
ne Configurations	J.	7	î,		, j	†	
affic Volume (vph)	162	53	828	158	12	768	
ure Volume (vph)	162	53	828	158	12	768	
al Flow (vphpl)	1900	1900	1900	1900	1900	1900	
tal Lost time (s)	5.0	5.0	5.0		5.0	5.0	
ne Util. Factor	1.00	1.00	1.00		1.00	1.00	
pb, ped/bikes	1.00	0.64	0.99		1.00	1.00	
pb, ped/bikes	1.00	1.00	1.00		1.00	1.00	
t	1.00	0.85	0.98		1.00	1.00	
It Protected	0.95	1.00	1.00		0.95	1.00	
atd. Flow (prot)	1750	1004	1779		1750	1842	
It Permitted	0.95	1.00	1.00		0.13	1.00	
atd. Flow (perm)	1750	1004	1779		241	1842	
eak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
dj. Flow (vph)	180	59	920	176	13	853	
TOR Reduction (vph)	0	49	7	0	0	0	
ane Group Flow (vph)	180	10	1089	0	13	853	
onfl. Peds. (#/hr)		137					
onfl. Bikes (#/hr)		2		118			
ırn Type	Perm	Perm	NA		Perm	NA	
rotected Phases			2			6	
ermitted Phases	8	8			6		
ctuated Green, G (s)	14.1	14.1	63.9		63.9	63.9	
Effective Green, g (s)	15.1	15.1	64.9		64.9	64.9	
ctuated g/C Ratio	0.17	0.17	0.72		0.72	0.72	
Clearance Time (s)	6.0	6.0	6.0		6.0	6.0	
/ehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	
ane Grp Cap (vph)	293	168	1282		173	1328	
/s Ratio Prot			c0.61			0.46	
/s Ratio Perm	c0.10	0.01			0.05		
/c Ratio	0.61	0.06	0.85		0.08	0.64	
Iniform Delay, d1	34.7	31.5	9.0		3.7	6.5	
rogression Factor	1.00	1.00	1.00		1.00	1.00	
ncremental Delay, d2	3.8	0.1	7.2		0.8	2.4	
elay (s)	38.5	31.6	16.2		4.5	8.9	
evel of Service	D	С	В		Α	Α	
pproach Delay (s)	36.8		16.2			8.9	
oproach LOS	D		В			Α	
ersection Summary							
CM 2000 Control Delay			15.6	Ш	CM 2000	Level of Service	e l
CM 2000 Control Delay	acity ratio		0.81	П	OW 2000	Feaci of Scial	
ctuated Cycle Length (s)	acity ratio		90.0	9	um of lost	time (s)	11.
tersection Capacity Utiliz	ration		76.5%		U Level c		11.
nalysis Period (min)	Laudii		15	IC	O LEVEL	A OCI VICE	
aiyələ Fellou (IIIIII)			13				

c Critical Lane Group

Lanes, Volumes, Timings 97: Yukon Place & British Colombia Rd

09/30/2021

	۶	-	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4		ሻ	†	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Storage Length (m)	30.0		0.0	20.0		20.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		1	0		0	0		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor				1.00				0.99			0.97	
Frt						0.850					0.865	
Flt Protected	0.950			0.950				0.957				
Satd. Flow (prot)	1685	1824	0	1685	1756	1507	0	1798	0	0	1574	0
Flt Permitted	0.555			0.494								
Satd. Flow (perm)	984	1824	0	874	1756	1507	0	1860	0	0	1574	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						45					514	
Link Speed (k/h)		30			30			30			30	
Link Distance (m)		164.9			265.9			92.0			121.3	
Travel Time (s)		19.8			31.9			11.0			14.6	
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	29	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.09	1.01	1.09	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5	6.1	6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8	6.1	6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report

Page 1

Lanes, Volumes, Timings 97: Yukon Place & British Colombia Rd

20	10	Λ	in	n	2	i
19	1.5	u	17	u	1/	

	٠	-	\rightarrow	•	←	•	4	†	1	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	33.0	33.0		33.0	33.0	33.0	7.0	7.0		7.0	7.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	24.0	24.0		24.0	24.0	
Total Split (s)	47.0	47.0		47.0	47.0	47.0	25.0	25.0		25.0	25.0	
Total Split (%)	65.3%	65.3%		65.3%	65.3%	65.3%	34.7%	34.7%		34.7%	34.7%	
Maximum Green (s)	41.0	41.0		41.0	41.0	41.0	19.0	19.0		19.0	19.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0	-1.0		-1.0			-1.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0		9.0	9.0	9.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0		0	0	
Act Effct Green (s)	58.5	58.5		58.5	58.5	58.5		8.0			8.0	
Actuated g/C Ratio	0.90	0.90		0.90	0.90	0.90		0.12			0.12	
v/c Ratio	0.00	0.29		0.00	0.22	0.00		0.04			0.05	
Control Delay	2.0	2.3		2.0	2.1	0.0		27.0			0.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay	2.0	2.3		2.0	2.1	0.0		27.0			0.1	
LOS	Α	Α		Α	Α	Α		С			Α	
Approach Delay		2.3			2.1			27.0			0.1	
Approach LOS		Α			Α			С			Α	
Intersection Summary												

Intersection Summa	ary	
Area Type:	Other	
Cycle Length: 72		
Actuated Cycle Len	gth: 65.2	
Natural Cycle: 65		
Control Type: Semi	Act-Uncoord	
Maximum v/c Ratio	: 0.29	
Intersection Signal	Delay: 2.4	Intersection LOS: A
Intersection Capaci	ty Utilization 73.3%	ICU Level of Service D
Analysis Period (mi	n) 15	

Splits and Phases: 97: Yukon Place & British Colombia Rd

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lane Group Lane Group Flow (vph)

Control Delay

Queue Delay

Queue Length 50th (m)

Queue Length 95th (m) Internal Link Dist (m)

Turn Bay Length (m)

Base Capacity (vph)

Starvation Cap Reductn

Spillback Cap Reductn

Storage Cap Reductn

Intersection Summary

Reduced v/c Ratio

Total Delay

v/c Ratio

EBT

470

0.29

2.3

2.3

0.0

140.9

0

0

0.00

2.0

2.0

0.0

0.3 18.3

20.0

783

0

0

0.00

0.00

2.0

2.0

0.0

0.3 26.4

30.0

0

0

0.00 0.29 342

0.22

2.1

2.1

0.0

0

0

0.22

241.9

0.00

0.0 27.0

0.0 27.0

0.0

0.0

20.0

1356

0

0

0.00

0.04

0.9

4.5

68.0

574

0

0

0.02

0.05

0.1

0.0

0.1

0.0

0.0

97.3

840

0

0

0

0.03

	۶	→	\rightarrow	•	←	•	4	†	<i>></i>	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	£		7	*	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00			0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		0.99			1.00	
Frt	1.00	1.00		1.00	1.00	0.85		1.00			0.86	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.96			1.00	
Satd. Flow (prot)	1685	1824		1681	1756	1507		1781			1574	
Flt Permitted	0.56	1.00		0.49	1.00	1.00		1.00			1.00	
Satd. Flow (perm)	985	1824		873	1756	1507		1860			1574	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	27	(
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	2	(
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	54.3	54.3		54.3	54.3	54.3		2.6			2.6	
Effective Green, q (s)	55.3	55.3		55.3	55.3	55.3		3.6			3.6	
Actuated g/C Ratio	0.80	0.80		0.80	0.80	0.80		0.05			0.05	
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	790	1463		700	1409	1209		97			82	
v/s Ratio Prot		c0.26			0.19						0.00	
v/s Ratio Perm	0.00			0.00		0.00		c0.00				
v/c Ratio	0.00	0.32		0.00	0.24	0.00		0.09			0.02	
Uniform Delay, d1	1.3	1.8		1.3	1.7	1.3		31.1			31.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	0.0	0.6		0.0	0.4	0.0		0.4			0.1	
Delay (s)	1.3	2.4		1.3	2.1	1.3		31.5			31.1	
Level of Service	A	Α		Α	Α	Α		С			С	
Approach Delay (s)		2.4			2.1			31.5			31.1	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			3.5	Н	CM 2000	Level of S	Service		A			
HCM 2000 Control Delay HCM 2000 Volume to Capa	city ratio		0.31	П	JIVI 2000	LOVE! UI	JOI VICE					
Actuated Cycle Length (s)	iony radio		68.9	Şı	um of lost	time (s)			10.0			
Intersection Capacity Utiliza	ation		73.3%			of Service			10.0 D			
Analysis Period (min)	au/II		15.5 %	IC	O LEVEL	JI GEI VICE			U			
c Critical Lane Group			10									

	•	-	\rightarrow	•	←	•	1	†	-	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	î,		7	*	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00			0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		0.99			1.00	
Frt	1.00	1.00		1.00	1.00	0.85		1.00			0.86	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.96			1.00	
Satd. Flow (prot)	1685	1824		1681	1756	1507		1781			1574	
Flt Permitted	0.56	1.00		0.49	1.00	1.00		1.00			1.00	
Satd. Flow (perm)	985	1824		873	1756	1507		1860			1574	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	27	(
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	2	(
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	54.3	54.3		54.3	54.3	54.3		2.6			2.6	
Effective Green, g (s)	55.3	55.3		55.3	55.3	55.3		3.6			3.6	
Actuated g/C Ratio	0.80	0.80		0.80	0.80	0.80		0.05			0.05	
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	790	1463		700	1409	1209		97			82	
v/s Ratio Prot		c0.26			0.19						0.00	
v/s Ratio Perm	0.00			0.00		0.00		c0.00				
v/c Ratio	0.00	0.32		0.00	0.24	0.00		0.09			0.02	
Uniform Delay, d1	1.3	1.8		1.3	1.7	1.3		31.1			31.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	0.0	0.6		0.0	0.4	0.0		0.4			0.1	
Delay (s)	1.3	2.4		1.3	2.1	1.3		31.5			31.1	
Level of Service	Α	Α		Α	Α	Α		С			С	
Approach Delay (s)		2.4			2.1			31.5			31.1	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			3.5	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.31			,,,,,,,,,						
Actuated Cycle Length (s)	,,		68.9	Sı	um of lost	time (s)			10.0			
Intersection Capacity Utiliza	ation		73.3%			of Service			D			
Analysis Period (min)			15			2200						
c Critical Lane Group			.,									

HCM 2000 Control Delay	3.5	HCM 2000 Level of Service	Α	
HCM 2000 Volume to Capacity ratio	0.31			
Actuated Cycle Length (s)	68.9	Sum of lost time (s)	10.0	
Intersection Capacity Utilization	73.3%	ICU Level of Service	D	
Analysis Period (min)	15			
c Critical Lane Group				

Lanes, Volumes, Timings 222: Strachan Ave & Lakeshore Blvd

09/30/2021

	۶	→	•	€	←	•	1	†	~	/	↓	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተው		ሻ	ተተተ			4			ર્ન	7
Traffic Volume (vph)	502	3996	5	8	1196	0	0	40	0	297	21	235
Future Volume (vph)	502	3996	5	8	1196	0	0	40	0	297	21	235
Ideal Flow (vphpl)	2150	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Storage Length (m)	60.0		0.0	60.0		50.0	0.0		0.0	140.0		50.0
Storage Lanes	1		0	1		0	0		0	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	*1.00	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor		1.00										0.92
Frt												0.850
Flt Protected	0.950			0.950						0.950	0.958	
Satd. Flow (prot)	1643	5990	0	1685	4885	0	0	1879	0	1585	1695	1507
Flt Permitted	0.087			0.098						0.728	0.721	
Satd. Flow (perm)	151	5990	0	174	4885	0	0	1879	0	1214	1276	1388
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)												261
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		310.3			196.6			116.5			205.6	
Travel Time (s)		18.6			11.8			10.5			18.5	
Confl. Peds. (#/hr)	6		8	8		6	52					52
Confl. Bikes (#/hr)									40			17
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	16%	4%	0%	0%	5%	33%	0%	0%	0%	1%	0%	0%
Adj. Flow (vph)	558	4440	6	9	1329	0	0	44	0	330	23	261
Shared Lane Traffic (%)										49%		
Lane Group Flow (vph)	558	4446	0	9	1329	0	0	44	0	168	185	261
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	0.93	0.89	1.01	1.09	1.01	1.09	1.01	1.01	1.01	1.09	1.01	1.09
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 5

Lanes, Volumes, Timings 222: Strachan Ave & Lakeshore Blvd

	٠	-	\rightarrow	•	←	•	4	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA			NA		Perm	NA	pm+o\
Protected Phases	5	2			6			3			4	5
Permitted Phases	2			6			3			4		4
Detector Phase	5	2		6	6		3	3		4	4	5
Switch Phase												
Minimum Initial (s)	6.0	29.0		30.0	30.0		12.0	12.0		10.0	10.0	6.0
Minimum Split (s)	12.0	35.0		36.0	36.0		21.0	21.0		45.0	45.0	12.0
Total Split (s)	31.0	76.0		45.0	45.0		22.0	22.0		46.0	46.0	31.0
Total Split (%)	21.5%	52.8%		31.3%	31.3%		15.3%	15.3%		31.9%	31.9%	21.5%
Maximum Green (s)	25.0	70.0		39.0	39.0		13.0	13.0		38.0	38.0	25.0
Yellow Time (s)	3.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		2.0	2.0		6.0	6.0		5.0	5.0	3.0
Lost Time Adjust (s)	-3.0	-3.0		-1.0	-1.0			-1.0		-1.0	-1.0	-1.0
Total Lost Time (s)	3.0	3.0		5.0	5.0			8.0		7.0	7.0	5.0
Lead/Lag	Lead			Lag	Lag		Lead	Lead		Lag	Lag	Lead
Lead-Lag Optimize?				- 3						- 3		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Max		Max	Max		None	None		None	None	None
Walk Time (s)	110.10	7.0		7.0	7.0		110110	110110		7.0	7.0	
Flash Dont Walk (s)		22.0		22.0	22.0					30.0	30.0	
Pedestrian Calls (#/hr)		3		2	2					0	0	
Act Effct Green (s)	74.2	74.2		40.7	40.7			13.2		24.4	24.4	52.8
Actuated g/C Ratio	0.60	0.60		0.33	0.33			0.11		0.20	0.20	0.42
v/c Ratio	1.30	1.25		0.16	0.83			0.22		0.71	0.74	0.34
Control Delay	183.0	139.6		44.8	46.4			59.2		64.3	66.2	3.5
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	0.0
Total Delay	183.0	139.6		44.8	46.4			59.2		64.3	66.2	3.5
LOS	F	F		D	D			E		Ε.	E	A
Approach Delay		144.5			46.4			59.3			39.0	
Approach LOS		F			D			E			D	
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 12	24.7											
Natural Cycle: 145												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 1.30												
Intersection Signal Delay:	115.9			Ir	ntersection	LOS: F						
Intersection Capacity Utiliz		%			CU Level		Н					
Analysis Period (min) 15							.,					
* User Entered Value												
Splits and Phases: 222	: Strachan A	uo & Lako	choro Plu	d								
A	. Suacrian A	ve & Lake	SHOLE BIA	u	Т.	¶ø3		-A.				
→ _{Ø2}					- 1	™ Ø3		₽ Ø4				

222: Strachan Ave & Lakeshore Blvd

09/30/2021

	•	-	1	←	†	-	Ų.	1	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	558	4446	9	1329	44	168	185	261	
v/c Ratio	1.30	1.25	0.16	0.83	0.22	0.71	0.74	0.34	
Control Delay	183.0	139.6	44.8	46.4	59.2	64.3	66.2	3.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	183.0	139.6	44.8	46.4	59.2	64.3	66.2	3.5	
Queue Length 50th (m)	~172.8	~482.3	1.7	116.8	10.4	42.5	47.1	0.0	
Queue Length 95th (m)	#272.2	#566.5	7.5	#163.6	24.0	67.8	73.8	13.9	
Internal Link Dist (m)		286.3		172.6	92.5		181.6		
Turn Bay Length (m)	60.0		60.0			140.0		50.0	
Base Capacity (vph)	430	3565	56	1593	214	385	405	763	
Starvation Cap Reductn	0	67	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.30	1.27	0.16	0.83	0.21	0.44	0.46	0.34	

HCM Signalized Intersection Capacity Analysis 222: Strachan Ave & Lakeshore Blvd

09/30/2021

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- 1	ተተው			ተተተ			4		7	4	7
Traffic Volume (vph)	502	3996	5	8	1196	0	0	40	0	297	21	235
Future Volume (vph)	502	3996	5	8	1196	0	0	40	0	297	21	235
Ideal Flow (vphpl)	2150	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Total Lost time (s)	3.0	3.0		5.0	5.0			8.0		7.0	7.0	5.0
Lane Util. Factor	1.00	*1.00		1.00	0.91			1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00			1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	0.96	1.00
Satd. Flow (prot)	1643	5989		1685	4885			1879		1585	1695	1455
Flt Permitted	0.09	1.00		0.10	1.00			1.00		0.73	0.72	1.00
Satd. Flow (perm)	151	5989		174	4885			1879		1215	1276	1455
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	558	4440	6	9	1329	0	0	44	0	330	23	261
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	156
Lane Group Flow (vph)	558	4446	0	9	1329	0	0	44	0	168	185	105
Confl. Peds. (#/hr)	6		8	8		6	52					52
Confl. Bikes (#/hr)									40			17
Heavy Vehicles (%)	16%	4%	0%	0%	5%	33%	0%	0%	0%	1%	0%	0%
Turn Type	pm+pt	NA		Perm	NA			NA		Perm	NA	pm+ov
Protected Phases	5	2			6			3			4	5
Permitted Phases	2			6			3			4		4
Actuated Green, G (s)	71.2	71.2		39.8	39.8		-	9.1		23.4	23.4	48.8
Effective Green, q (s)	74.2	74.2		40.8	40.8			10.1		24.4	24.4	50.8
Actuated g/C Ratio	0.59	0.59		0.32	0.32			0.08		0.19	0.19	0.40
Clearance Time (s)	6.0	6.0		6.0	6.0			9.0		8.0	8.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	422	3507		56	1573			149		233	245	583
v/s Ratio Prot	c0.30	0.74			0.27			c0.02		200	2.0	0.04
v/s Ratio Perm	c0.48	0		0.05	0.2.			00.02		0.14	c0.14	0.03
v/c Ratio	1.32	1.27		0.16	0.84			0.30		0.72	0.76	0.18
Uniform Delay, d1	39.5	26.2		30.7	40.0			54.9		48.0	48.3	24.5
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00
Incremental Delay, d2	160.8	122.9		6.1	5.8			1.1		10.5	12.4	0.1
Delay (s)	200.3	149.1		36.8	45.8			56.1		58.4	60.7	24.6
Level of Service	- F	F		D	D			E		E	E	C
Approach Delay (s)	'	154.8			45.7			56.1		_	44.8	
Approach LOS		F			D			50.1 E			D	
								_				
Intersection Summary			123.7	11.	CM 2000	Level of S	Comileo		F			
HCM 2000 Control Delay	a aitu ratio			H	UN 2000	Level of S	pervice		F			
HCM 2000 Volume to Capa	acity ratio		1.17	0	um of le-	time (a)			25.0			
Actuated Cycle Length (s)	_4:		126.7		um of lost	. ,			25.0			
Intersection Capacity Utiliz	ation		136.4%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									

Intersection Summary				
HCM 2000 Control Delay	123.7	HCM 2000 Level of Service	F	
HCM 2000 Volume to Capacity ratio	1.17			
Actuated Cycle Length (s)	126.7	Sum of lost time (s)	25.0	
Intersection Capacity Utilization	136.4%	ICU Level of Service	Н	
Analysis Period (min)	15			
- O-HII O				

c Critical Lane Group

HDR Corporation

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements

Lanes, Volumes, Timings 538: Strachan Ave & King St

09/30/2021

	۶	→	•	•	←	•	4	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			4î>		7	1₃		7	1₃	
Traffic Volume (vph)	0	627	146	66	561	40	132	340	126	27	214	20
Future Volume (vph)	0	627	146	66	561	40	132	340	126	27	214	20
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	25.0		0.0	25.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.90			0.98		0.85	0.96		0.96	0.98	
Frt		0.972			0.991			0.959			0.987	
Flt Protected					0.995		0.950			0.950		
Satd. Flow (prot)	0	1559	0	0	1695	0	1458	1476	0	1516	1603	0
Flt Permitted					0.768		0.479			0.160		
Satd. Flow (perm)	0	1559	0	0	1293	0	625	1476	0	246	1603	0
Right Turn on Red		1000	Yes	, ,	1200	Yes	020	1470	Yes	2.10	1000	Yes
Satd. Flow (RTOR)		54	100		13	100		24	100		6	100
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		255.2			358.6			424.1			379.9	
Travel Time (s)		18.4			25.8			38.2			34.2	
Confl. Peds. (#/hr)	54	10.4	300	300	20.0	54	216	50.2	124	124	04.2	216
Confl. Bikes (#/hr)	01		40	000		16	210		13	121		12
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	0%	9%	28%	100%	7%	5%	4%	6%	3%	0%	2%	0%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	0	729	170	77	652	47	153	395	147	31	249	23
Shared Lane Traffic (%)		. 20			002			000		0.	2.0	
Lane Group Flow (vph)	0	899	0	0	776	0	153	542	0	31	272	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.92	2.03	1.92	1.92	2.03	1.92	1.25	1.16	1.16	1.25	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel	01.27	0. Ex		O. LA	O. LX		O. LX	O. LA		0. 2.	O. LX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
20100101 2 0120(111)		1.0			1.0			1.0			1.0	

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 9 Lanes, Volumes, Timings 538: Strachan Ave & King St

₩ Ø6 (R)

	•	-	•	•	←	•	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	20.0	20.0		20.0	20.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		27.0	27.0		27.0	27.0	
Total Split (s)	50.0	50.0		50.0	50.0		30.0	30.0		30.0	30.0	
Total Split (%)	62.5%	62.5%		62.5%	62.5%		37.5%	37.5%		37.5%	37.5%	
Maximum Green (s)	44.0	44.0		44.0	44.0		24.0	24.0		24.0	24.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0		-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		16	16		100	100		100	100	
Act Effct Green (s)		45.0			45.0		25.0	25.0		25.0	25.0	
Actuated g/C Ratio		0.56			0.56		0.31	0.31		0.31	0.31	
v/c Ratio		1.00			1.06		0.78	1.14		0.41	0.54	
Control Delay		48.5			65.3		55.1	112.0		45.8	33.1	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		48.5			65.3		55.1	112.0		45.8	33.1	
LOS		D			E		E	F		D	C	
Approach Delay		48.5			65.3		_	99.5			34.4	
Approach LOS		D.0			E			F			C	
											0	
Intersection Summary Area Type:	CBD											
Cycle Length: 80	CDD											
Actuated Cycle Length: 80	ı											
Offset: 42 (53%), Reference		2-ERTL a	and 6:MR	TI Start	of 1ct Cro	on						
Natural Cycle: 80	bed to phase	Z.LDIL 6	iliu U.VVD	TL, Start	01 131 016	CII						
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 1.14	Jorumaleu											
	SE O				ntersection	I Oe · E						
Intersection Signal Delay: Intersection Capacity Utiliz)/			itersection CU Level o		, LI					
Analysis Period (min) 15	.alion 133.0	/0		ľ	JO LEVEI (ii Seivice	<i>7</i> П					
Califo and Dhagon: 520-	Ctrophon A	o 9 Vina	C+									
Splits and Phases: 538:	Strachan A	ve & King	ા				1.4					
- 402 (R)							* †₀	и				

538: Strachan Ave & King St

09/30/2021

Synchro 11 Report

Page 11

	-	-	4	†	-	Ţ
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	899	776	153	542	31	272
v/c Ratio	1.00	1.06	0.78	1.14	0.41	0.54
Control Delay	48.5	65.3	55.1	112.0	45.8	33.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.5	65.3	55.1	112.0	45.8	33.1
Queue Length 50th (m)	63.5	~53.2	21.0	~95.1	4.6	41.3
Queue Length 95th (m)	#101.3	#93.9	#48.6	#142.9	m9.2	m57.6
Internal Link Dist (m)	231.2	334.6		400.1		355.9
Turn Bay Length (m)			25.0		25.0	
Base Capacity (vph)	900	733	195	477	76	505
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.00	1.06	0.78	1.14	0.41	0.54

Intersection Summar

HCM Signalized Intersection Capacity Analysis

538: Strachan Ave & King St

09/30/2021

	۶	→	•	•	←	•	4	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			413		7	ĵ.		7	î,	
Traffic Volume (vph)	0	627	146	66	561	40	132	340	126	27	214	20
Future Volume (vph)	0	627	146	66	561	40	132	340	126	27	214	20
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.95			0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.90			0.99		1.00	0.96		1.00	0.98	
Flpb, ped/bikes		1.00			0.99		0.85	1.00		0.96	1.00	
Frt		0.97			0.99		1.00	0.96		1.00	0.99	
Flt Protected		1.00			1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1558			1675		1239	1476		1460	1604	
Flt Permitted		1.00			0.77		0.48	1.00		0.16	1.00	
Satd. Flow (perm)		1558			1293		624	1476		246	1604	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	0	729	170	77	652	47	153	395	147	31	249	23
RTOR Reduction (vph)	0	24	0	0	6	0	0	17	0	0	4	0
Lane Group Flow (vph)	0	875	0	0	770	0	153	526	0	31	268	0
Confl. Peds. (#/hr)	54		300	300		54	216		124	124		216
Confl. Bikes (#/hr)			40			16			13			12
Heavy Vehicles (%)	0%	9%	28%	100%	7%	5%	4%	6%	3%	0%	2%	0%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA.		Perm	NA.		Perm	NA		Perm	NA	
Protected Phases		2		1 01111	6		1 01111	4		1 01111	8	
Permitted Phases	2	-		6			4	•		8	·	
Actuated Green, G (s)		44.0			44.0		24.0	24.0		24.0	24.0	
Effective Green, q (s)		45.0			45.0		25.0	25.0		25.0	25.0	
Actuated g/C Ratio		0.56			0.56		0.31	0.31		0.31	0.31	
Clearance Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		876			727		195	461		76	501	
v/s Ratio Prot		0.56			121		133	c0.36		70	0.17	
v/s Ratio Perm		0.50			c0.60		0.25	60.50		0.13	0.17	
v/c Ratio		1.00			1.06		0.23	1.14		0.13	0.53	
Uniform Delay, d1		17.5			17.5		25.0	27.5		21.7	22.7	
Progression Factor		1.00			0.69		1.00	1.00		1.26	1.28	
Incremental Delay, d2		30.2			49.6		26.4	86.2		14.2	3.7	
Delay (s)		47.7			61.7		51.5	113.7		41.6	32.9	
Level of Service		41.1 D			01.7 E		J1.J	F		41.0 D	32.9 C	
Approach Delay (s)		47.7			61.7		U	100.0		U	33.8	
Approach LOS		41.1 D			61.7 E			F			33.0 C	
Intersection Summary												
HCM 2000 Control Delay			63.8	Ш	CM 2000	Level of S	Convice		Е			
	ity ratio		1.09	П	CIVI ZUUU	Level of 3	oei vice					
HCM 2000 Volume to Capac Actuated Cycle Length (s)	ity Tallo		80.0	0.	um of lost	time (c)			10.0			
	ion		135.0%			of Service			10.0 H			
Intersection Capacity Utilizat Analysis Period (min)	1011		135.0%	IC	O Level (n Service			Н			
c Critical Lane Group			10									
5 Shillour Eurio Group												

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

09/30/2021

	۶	-	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			4î>			414			414	
Traffic Volume (vph)	56	747	86	42	463	106	34	273	44	112	612	42
Future Volume (vph)	56	747	86	42	463	106	34	273	44	112	612	42
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1250	1250	1250	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.97			0.96			0.97			0.97	
Frt		0.985			0.974			0.981			0.992	
Flt Protected		0.997			0.997			0.995			0.993	
Satd. Flow (prot)	0	1878	0	0	1806	0	0	1722	0	0	2781	0
Flt Permitted		0.855			0.758			0.738			0.806	
Satd. Flow (perm)	0	1605	0	0	1370	0	0	1273	0	0	2226	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		19			40			23			8	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		291.1			316.7			212.5			385.1	
Travel Time (s)		21.0			22.8			15.3			27.7	
Confl. Peds. (#/hr)	144		212	212		144	189		143	143		189
Confl. Bikes (#/hr)			78			6			12			125
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	5%	4%	10%	2%	4%	7%	8%	12%	0%	3%	9%	7%
Bus Blockages (#/hr)	12	12	12	24	24	24	12	30	30	0	18	18
Adj. Flow (vph)	65	869	100	49	538	123	40	317	51	130	712	49
Shared Lane Traffic (%)	00	000	100	-10	000	120	-10	011	01	100	7 12	-10
Lane Group Flow (vph)	0	1034	0	0	710	0	0	408	0	0	891	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	0.0	ragni	LUIT	0.0	rtigiit	LOIL	0.0	rtigiit	Loit	0.0	ragni
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.92	1.97	1.92	1.92	2.03	1.92	1.92	2.06	1.92	1.16	1.22	1.16
Turning Speed (k/h)	24	1.01	14	24	2.00	14	24	2.00	14	24	1.22	14
Turn Type	Perm	NA		Perm	NA	- 11	pm+pt	NA	1-1	Perm	NA	
Protected Phases	1 Cilli	2		1 Cilli	6		3	8		1 Cilli	4	
Permitted Phases	2	2		6	U		8	U		4	7	
Minimum Split (s)	27.0	27.0		27.0	27.0		10.0	27.0		27.0	27.0	
Total Split (s)	41.0	41.0		41.0	41.0		10.0	39.0		29.0	29.0	
Total Split (%)	51.3%	51.3%		51.3%	51.3%		12.5%	48.8%		36.3%	36.3%	
Maximum Green (s)	35.0	35.0		35.0	35.0		6.0	33.0		23.0	23.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		1.0	2.0		2.0	2.0	
Lost Time Adjust (s)	2.0	-2.0		2.0	-1.0		1.0	-1.0		2.0	-1.0	
Total Lost Time (s)		4.0			5.0			5.0			5.0	
Lead/Lag		4.0			3.0		Lead	3.0		Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Walk Time (s)	7.0	7.0		7.0	7.0		165	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			14.0		14.0	14.0	
	100	100		100	100			14.0		100	14.0	
Pedestrian Calls (#/hr)	100			100						100		
Act Effct Green (s)		37.0			36.0			34.0			24.0	

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 13 Lanes, Volumes, Timings 539: Dufferin St & King St

09/30/2021 EBL WBT NBT Lane Group EBT Actuated g/C Ratio 0.42 0.30 0.46 v/c Ratio 1.38 1.11 0.70 1.32 Control Delay 198.1 84.8 17.8 183.0 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 198.1 84.8 17.8 183.0 LOS В Approach Delay 198.1 84.8 Approach LOS F F В Intersection Summary Area Type: CBD Cycle Length: 80
Actuated Cycle Length: 80 Offset: 15 (19%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 130 Control Type: Pretimed
Maximum v/c Ratio: 1.38
Intersection Signal Delay: 143.0 Intersection LOS: F Intersection Capacity Utilization 131.4% ICU Level of Service H Analysis Period (min) 15 Splits and Phases: 539: Dufferin St & King St **↑** Ø3 ≠_{Ø2 (R)} Ø4

539: Dufferin St & King St

09/30/2021

	-	•	Ţ	¥
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	1034	710	408	891
v/c Ratio	1.38	1.11	0.70	1.32
Control Delay	198.1	84.8	17.8	183.0
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	198.1	84.8	17.8	183.0
Queue Length 50th (m)	~111.5	~64.7	17.4	~94.1
Queue Length 95th (m)	#139.3	#89.5	m19.4	#121.5
Internal Link Dist (m)	267.1	292.7	188.5	361.1
Turn Bay Length (m)				
Base Capacity (vph)	752	638	582	673
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	1.38	1.11	0.70	1.32

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 539: Dufferin St & King St

00	10	Λ	in	n	1
09	1.5	u	17	u	1

	۶	→	\rightarrow	•	←	•	4	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			414			413	
Traffic Volume (vph)	56	747	86	42	463	106	34	273	44	112	612	42
Future Volume (vph)	56	747	86	42	463	106	34	273	44	112	612	42
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1250	1250	1250	1900	1900	1900
Total Lost time (s)		4.0			5.0			5.0			5.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.97			0.96			0.98			0.98	
Flpb, ped/bikes		1.00			1.00			1.00			0.99	
Frt		0.99			0.97			0.98			0.99	
Flt Protected		1.00			1.00			1.00			0.99	
Satd. Flow (prot)		1872			1801			1719			2742	
Flt Permitted		0.85			0.76			0.74			0.81	
Satd. Flow (perm)		1605			1370			1275			2225	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	65	869	100	49	538	123	40	317	51	130	712	49
RTOR Reduction (vph)	0	10	0	0	22	0	0	13	0	0	6	0
Lane Group Flow (vph)	0	1024	0	0	688	0	0	395	0	0	885	0
Confl. Peds. (#/hr)	144		212	212		144	189		143	143		189
Confl. Bikes (#/hr)			78			6			12			125
Heavy Vehicles (%)	5%	4%	10%	2%	4%	7%	8%	12%	0%	3%	9%	7%
Bus Blockages (#/hr)	12	12	12	24	24	24	12	30	30	0	18	18
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		2			6		3	8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)		35.0			35.0			33.0			23.0	
Effective Green, g (s)		37.0			36.0			34.0			24.0	
Actuated g/C Ratio		0.46			0.45			0.42			0.30	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Lane Grp Cap (vph)		742			616			580			667	
v/s Ratio Prot								c0.06				
v/s Ratio Perm		c0.64			0.50			0.23			c0.40	
v/c Ratio		1.38			1.12			0.68			1.33	
Uniform Delay, d1		21.5			22.0			18.6			28.0	
Progression Factor		0.83			0.68			0.86			1.00	
Incremental Delay, d2		179.2			68.3			2.2			157.6	
Delay (s)		197.0			83.2			18.1			185.6	
Level of Service		F			F			В			F	
Approach Delay (s)		197.0			83.2			18.1			185.6	
Approach LOS		F			F			В			F	
Intersection Summary												
HCM 2000 Control Delay			143.1	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.31									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			13.0			
Intersection Capacity Utiliza	ition		131.4%	IC	CU Level	of Service)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements

HDR Corporation

	ᄼ	-	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.			ની	7	*	4		Ť	ĵ.	
Traffic Volume (vph)	91	86	50	119	56	90	83	346	182	51	315	80
Future Volume (vph)	91	86	50	119	56	90	83	346	182	51	315	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	25.0		0.0	0.0		50.0	30.0		0.0	25.0		0.0
Storage Lanes	1		0	0		1	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.86	0.97			0.97	0.77	0.98	0.97			0.98	
Frt		0.945				0.850		0.948			0.970	
Flt Protected	0.950				0.967		0.950			0.950		
Satd. Flow (prot)	1589	1655	0	0	1682	1436	1652	1676	0	1620	1708	0
Flt Permitted	0.546				0.659		0.368			0.237		
Satd. Flow (perm)	784	1655	0	0	1108	1112	628	1676	0	404	1708	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		19				152		21			10	
Link Speed (k/h)		30			50			40			40	
Link Distance (m)		143.4			229.0			205.6			241.4	
Travel Time (s)		17.2			16.5			18.5			21.7	
Confl. Peds. (#/hr)	93		29	29		93	22		25	25		22
Confl. Bikes (#/hr)			1						1			36
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	6%	5%	2%	0%	25%	5%	2%	5%	0%	4%	5%	2%
Adj. Flow (vph)	101	96	56	132	62	100	92	384	202	57	350	89
Shared Lane Traffic (%)												
Lane Group Flow (vph)	101	152	0	0	194	100	92	586	0	57	439	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.00	4.04	4.04	4.04	4.04	4.00	4.00	4.04	4.04	4.00	4.04	4.04
Headway Factor	1.09	1.01	1.01	1.01	1.01	1.09	1.09	1.01	1.01	1.09	1.01	1.01
Turning Speed (k/h)	24	2	14	24 1	2	14	24	2	14	24	2	14
Number of Detectors	Left						Left			Left		
Detector Template		Thru 30.5		Left 6.1	Thru	Right 2.0	2.0	Thru 30.5			Thru 30.5	
Leading Detector (m)	6.1				30.5					2.0		
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)				0.0 6.1	1.8	0.0 2.0	0.0 2.0	1.8		2.0	1.8	
Detector 1 Size(m)	6.1 CI+Ex	1.8 CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Type Detector 1 Channel	CI+EX	CI+EX		CI+EX	CI+EX	CI+EX	CI+EX	CI+EX		CI+EX	CI+EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s) Detector 2 Position(m)	0.0	28.7		0.0	28.7	0.0	0.0	28.7		0.0	28.7	
		1.8			1.8			1.8			1.8	
Detector 2 Size(m)		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Type		UI+EX			UI+EX			∪I+EX			UI+EX	

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 17

Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Lane Width (m) Storage Length (m) Storage Length (m) Storage Length (m) Lane Util. Factor Ped Bike Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Ideal Flow (vphpl) Lane Width (m) Storage Length (m) Storage Lanes Taper Length (m) Lane Uili. Factor Ped Bike Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#hr) Confl. Bikes (#hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Ideal Flow (vphpl) Lane Width (m) Storage Length (m) Storage Lanes Taper Length (m) Lane Uili. Factor Ped Bike Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#hr) Confl. Bikes (#hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Storage Length (m) Storage Lanes Taper Length (m) Lane Util. Factor Ped Bike Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Storage Lanes Taper Length (m) Lane Util. Factor Ped Bike Factor Fit Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#hr) Confl. Bikes (#hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Storage Lanes Taper Length (m) Lane Util. Factor Ped Bike Factor Fit Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#hr) Confl. Bikes (#hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Lane Util. Factor Ped Blike Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Ped Bike Factor Frt Frt FrtProtected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#hr) Confl. Bikes (#hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#hr) Confl. Bikes (#hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Satd. Flow (RTOR) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Link Distance (m) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (yph) Shared Lane Traffic (%)
Confl. Peds. (#/hr) Confl. Bilkes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%)
Adj. Flow (vph) Shared Lane Traffic (%)
Shared Lane Traffic (%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(m)
Link Offset(m)
Crosswalk Width(m)
Two way Left Turn Lane
Headway Factor
Turning Speed (k/h)
Number of Detectors
Detector Template
Leading Detector (m)
Trailing Detector (m)
Detector 1 Position(m)
Detector 1 Size(m)
Detector 1 Type
Detector 1 Channel
Detector 1 Extend (s)
Detector 1 Queue (s)
Detector 1 Delay (s)
Detector 2 Position(m)
Detector 2 Size(m)
Detector 2 Type

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings

571: Strachan Ave & Canada Blvd/Fleet St

₩ø6

HDR Corporation

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements

Synchro 11 Report Page 19

	•	-	\rightarrow	•	←	•	4	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	32.0	32.0		32.0	32.0	32.0	29.0	29.0		29.0	29.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	36.0	36.0		36.0	36.0	
Total Split (s)	39.0	39.0		39.0	39.0	39.0	61.0	61.0		61.0	61.0	
Total Split (%)	27.1%	27.1%		27.1%	27.1%	27.1%	42.4%	42.4%		42.4%	42.4%	
Maximum Green (s)	32.0	32.0		32.0	32.0	32.0	54.0	54.0		54.0	54.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	3.0	3.0		3.0	3.0	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	4.0	4.0		4.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0		0.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	25.0	25.0		25.0	25.0	25.0	22.0	22.0		22.0	22.0	
Pedestrian Calls (#/hr)	10	10		28	28	28	7	7		6	6	
Act Effct Green (s)	33.5	33.5		20	33.5	33.5	55.9	55.9		55.9	55.9	
Actuated g/C Ratio	0.30	0.30			0.30	0.30	0.50	0.50		0.50	0.50	
v/c Ratio	0.43	0.30			0.59	0.23	0.29	0.69		0.28	0.51	
Control Delay	42.8	31.2			45.2	2.3	24.0	29.0		26.4	23.9	
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.5		0.0	0.0	
Total Delay	42.8	31.2			45.2	2.3	24.0	29.5		26.4	23.9	
LOS	72.0 D	C			D	Α.	C	C		C	C	
Approach Delay		35.8			30.6		U	28.7		Ū	24.2	
Approach LOS		D			C			C			C	
••												
Intersection Summary	Other											
Area Type:	Other											
Cycle Length: 144	10											
Actuated Cycle Length: 11	12											
Natural Cycle: 130												
Control Type: Semi Act-Ur	ncoora											
Maximum v/c Ratio: 0.69	00.0											
Intersection Signal Delay:		.,			ntersectio							
Intersection Capacity Utiliz	zation 127.65	/o		10	CU Level	of Service	e H					
Analysis Period (min) 15												
Splits and Phases: 571:	: Strachan A	ve & Cana	da Blvd/F	Fleet St								
Ø2	<u> </u>			#1.	110	- 12	•Ø4			1	Ø12	
61 s				22 s		20.0	-			22.		

Ø14

Lane Group	טוש	Ø IZ	Ø 14	טוש
Detector 2 Channel				
Detector 2 Extend (s)				
Turn Type				
Protected Phases	10	12	14	16
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	7.0	7.0	7.0	7.0
Minimum Split (s)	22.0	22.0	22.0	22.0
Total Split (s)	22.0	22.0	22.0	22.0
Total Split (%)	15%	15%	15%	15%
Maximum Green (s)	14.0	14.0	14.0	14.0
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0
Lost Time Adjust (s)	1.0	1.0	1.0	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Vehicle Extension (s)	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None
Walk Time (s)	0.0	0.0	0.0	0.0
Flash Dont Walk (s)	0.0	0.0	0.0	0.0
Pedestrian Calls (#/hr)	19	19	19	19
Act Effct Green (s)	13	19	19	13
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay LOS				
Approach Delay				
Approach LOS				
Intersection Summary				

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements

Lanes, Volumes, Timings

Lane Group

571: Strachan Ave & Canada Blvd/Fleet St

Ø10 Ø12 Ø14 Ø16

Synchro 11 Report

Page 21

	•	-	•	•	1	†	-	↓	
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	101	152	194	100	92	586	57	439	
v/c Ratio	0.43	0.30	0.59	0.23	0.29	0.69	0.28	0.51	
Control Delay	42.8	31.2	45.2	2.3	24.0	29.0	26.4	23.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	
Total Delay	42.8	31.2	45.2	2.3	24.0	29.5	26.4	23.9	
Queue Length 50th (m)	14.9	18.6	30.3	0.0	8.9	71.2	5.5	47.5	
Queue Length 95th (m)	41.4	47.6	#74.4	3.1	30.8	176.3	22.0	118.4	
Internal Link Dist (m)		119.4	205.0			181.6		217.4	
Turn Bay Length (m)	25.0			50.0	30.0		25.0		
Base Capacity (vph)	234	508	331	439	313	847	201	857	
Starvation Cap Reductn	0	0	0	0	0	54	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.43	0.30	0.59	0.23	0.29	0.74	0.28	0.51	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	-	•	•	•	•	4	†	-	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	ĵ.			ર્ન	7	Ť	ĵ.		ሻ	î»	
Traffic Volume (vph)	91	86	50	119	56	90	83	346	182	51	315	80
Future Volume (vph)	91	86	50	119	56	90	83	346	182	51	315	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.97			1.00	0.81	1.00	0.98		1.00	0.98	
Flpb, ped/bikes	0.87	1.00			0.97	1.00	0.98	1.00		0.99	1.00	
Frt	1.00	0.94			1.00	0.85	1.00	0.95		1.00	0.97	
Flt Protected	0.95	1.00			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1390	1661			1633	1157	1621	1682		1599	1712	
Flt Permitted	0.55	1.00			0.66	1.00	0.37	1.00		0.24	1.00	
Satd. Flow (perm)	799	1661			1113	1157	628	1682		399	1712	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	101	96	56	132	62	100	92	384	202	57	350	89
RTOR Reduction (vph)	0	14	0	0	0	73	0	11	0	0	5	(
Lane Group Flow (vph)	101	138	0	0	194	27	92	575	0	57	434	(
Confl. Peds. (#/hr)	93		29	29		93	22		25	25		22
Confl. Bikes (#/hr)			1						1			36
Heavy Vehicles (%)	6%	5%	2%	0%	25%	5%	2%	5%	0%	4%	5%	2%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.5	32.5			32.5	32.5	54.9	54.9		54.9	54.9	
Effective Green, q (s)	33.5	33.5			33.5	33.5	55.9	55.9		55.9	55.9	
Actuated g/C Ratio	0.27	0.27			0.27	0.27	0.46	0.46		0.46	0.46	
Clearance Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	219	455			305	317	287	769		182	783	
v/s Ratio Prot	2.0	0.08			000	0	20.	c0.34		.02	0.25	
v/s Ratio Perm	0.13	0.00			c0.17	0.02	0.15	00.01		0.14	0.20	
v/c Ratio	0.46	0.30			0.64	0.02	0.32	0.75		0.31	0.55	
Uniform Delay, d1	36.9	35.1			39.0	33.0	21.1	27.3		21.0	24.1	
Progression Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	6.8	1.7			9.7	0.5	2.9	6.5		4.4	2.8	
Delay (s)	43.7	36.8			48.7	33.5	24.0	33.9		25.4	26.9	
Level of Service	73.7 D	D			TO.7	C	C C	C		20.4 C	20.5 C	
Approach Delay (s)	D	39.6			43.6	U	U	32.5		U	26.7	
Approach LOS		D D			75.0 D			02.5 C			20.7 C	
Intersection Summary			00.0		014 0000		· ·					
HCM 2000 Control Delay			33.8	Н	CIVI 2000	Level of	service		С			
HCM 2000 Volume to Capac	ity ratio		0.67	^		Alman (.)			00.0			
Actuated Cycle Length (s)			122.2		um of lost				28.0			
Intersection Capacity Utilizat	ION		127.6%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									

33.8	HCM 2000 Level of Service	С	
0.67			
122.2	Sum of lost time (s)	28.0	
127.6%	ICU Level of Service	Н	
15			
	0.67 122.2 127.6%	0.67 122.2 Sum of lost time (s) 127.6% ICU Level of Service	0.67 122.2 Sum of lost time (s) 28.0 127.6% ICU Level of Service H

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

	ၨ	-	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	*				11		ተተጉ				
Traffic Volume (vph)	54	508	0	0	0	430	0	1402	14	0	0	0
Future Volume (vph)	54	508	0	0	0	430	0	1402	14	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Storage Length (m)	15.0		0.0	0.0		80.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	0		1	0		0	0		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.88	1.00	0.91	0.91	1.00	1.00	1.00
Ped Bike Factor						0.99						
Frt						0.850		0.998				
Flt Protected	0.950											
Satd. Flow (prot)	1620	1807	0	0	0	2652	0	4968	0	0	0	0
Flt Permitted	0.950											
Satd. Flow (perm)	1620	1807	0	0	0	2615	0	4968	0	0	0	0
Right Turn on Red	Yes		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)	99					767		1				
Link Speed (k/h)		60			30			60			60	
Link Distance (m)		411.9			164.9			800.6			492.6	
Travel Time (s)		24.7			19.8			48.0			29.6	
Confl. Peds. (#/hr)			1	1			17					17
Confl. Bikes (#/hr)			1			2						
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	4%	4%	4%	0%	0%	6%	0%	3%	7%	0%	0%	0%
Adj. Flow (vph)	60	564	0	0	0	478	0	1558	16	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	60	564	0	0	0	478	0	1574	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2				1		2				
Detector Template	Left	Thru				Right		Thru				
Leading Detector (m)	6.1	30.5				6.1		30.5				
Trailing Detector (m)	0.0	0.0				0.0		0.0				
Detector 1 Position(m)	0.0	0.0				0.0		0.0				
Detector 1 Size(m)	6.1	1.8				6.1		1.8				
Detector 1 Type	CI+Ex	CI+Ex				CI+Ex		Cl+Ex				
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0				0.0		0.0				
Detector 1 Queue (s)	0.0	0.0				0.0		0.0				
Detector 1 Delay (s)	0.0	0.0				0.0		0.0				
Detector 2 Position(m)		28.7						28.7				
Detector 2 Size(m)		1.8						1.8				
Detector 2 Type		CI+Ex						CI+Ex				

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 23

Lanes, Volumes, Timings 1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

	•	-	•	•	•	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0				
Turn Type	Perm	NA				Perm		NA				
Protected Phases		4						2				
Permitted Phases	4					9						
Detector Phase	4	4				9		2				
Switch Phase												
Minimum Initial (s)	7.0	7.0				7.0		22.0				
Minimum Split (s)	13.0	13.0				30.0		29.0				
Total Split (s)	40.0	40.0				30.0		40.0				
Total Split (%)	36.4%	36.4%				27.3%		36.4%				
Maximum Green (s)	34.0	34.0				24.0		33.0				
Yellow Time (s)	4.0	4.0				4.0		4.0				
All-Red Time (s)	2.0	2.0				2.0		3.0				
Lost Time Adjust (s)	-1.0	-1.0				-1.0		-1.0				
Total Lost Time (s)	5.0	5.0				5.0		6.0				
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Recall Mode	None	None				None		None				
Walk Time (s)	0.0	0.0				110110		7.0				
Flash Dont Walk (s)	0.0	0.0						15.0				
Pedestrian Calls (#/hr)	0.0	0.0						0.0				
Act Effct Green (s)	34.8	34.8				8.0		34.0				
Actuated g/C Ratio	0.38	0.38				0.09		0.37				
v/c Ratio	0.09	0.83				0.52		0.86				
Control Delay	1.7	39.0				2.1		33.5				
Queue Delay	0.0	0.0				0.0		0.0				
Total Delay	1.7	39.0				2.1		33.5				
LOS	Α.	39.0 D				2.1 A		33.5 C				
Approach Delay	А	35.4			2.1	А		33.5				
Approach LOS		33.4 D			2.1 A			33.5 C				
••		U			А							
Intersection Summary	011											
Area Type:	Other											
Cycle Length: 110	^											
Actuated Cycle Length: 92	.8											
Natural Cycle: 100												
Control Type: Semi Act-Un	coora											
Maximum v/c Ratio: 0.86												
Intersection Signal Delay: 2						n LOS: C	_					
Intersection Capacity Utiliz	ation 63.3%			IC	U Level	of Service	В					
Analysis Period (min) 15												
Splits and Phases: 1344	: Lakeshore	Blvd & Bi	itish Colo	mbia Rd								
↑			A						4_			

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

	•		•	•
		-	_	ı
Lane Group	EBL	EBT	WBR	NBT
Lane Group Flow (vph)	60	564	478	1574
v/c Ratio	0.09	0.83	0.52	0.86
Control Delay	1.7	39.0	2.1	33.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	1.7	39.0	2.1	33.5
Queue Length 50th (m)	0.0	90.1	0.0	94.4
Queue Length 95th (m)	2.9	#145.1	0.0	113.8
Internal Link Dist (m)		387.9		776.6
Turn Bay Length (m)	15.0		80.0	
Base Capacity (vph)	672	682	1264	1821
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.09	0.83	0.38	0.86

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1344: Lakeshore Blvd & British Colombia Rd

	•	→	•	•	←	•	1	1	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^				77		ተተ _ጉ				
Traffic Volume (vph)	54	508	0	0	0	430	0	1402	14	0	0	0
Future Volume (vph)	54	508	0	0	0	430	0	1402	14	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0				5.0		6.0				
Lane Util. Factor	1.00	1.00				0.88		0.91				
Frpb, ped/bikes	1.00	1.00				0.98		1.00				
Flpb, ped/bikes	1.00	1.00				1.00		1.00				
Frt	1.00	1.00				0.85		1.00				
Flt Protected	0.95	1.00				1.00		1.00				
Satd. Flow (prot)	1620	1807				2606		4970				
Flt Permitted	0.95	1.00				1.00		1.00				
Satd. Flow (perm)	1620	1807				2606		4970				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	60	564	0.00	0.00	0.00	478	0.00	1558	16	0.00	0.00	0.00
RTOR Reduction (vph)	38	0	0	0	0	437	0	1	0	0	0	0
Lane Group Flow (vph)	23	564	0	0	0	41	0	1573	0	0	0	0
Confl. Peds. (#/hr)	20	004	1	1	U		17	1010	Ū	U	v	17
Confl. Bikes (#/hr)			1			2	- ''					
Heavy Vehicles (%)	4%	4%	4%	0%	0%	6%	0%	3%	7%	0%	0%	0%
Turn Type	Perm	NA	.,,	0,0	070	Perm	0,0	NA	. ,,	0,0	0,0	070
Protected Phases	1 01111	4				1 01111		2				
Permitted Phases	4					9						
Actuated Green, G (s)	33.8	33.8				7.0		33.0				
Effective Green, q (s)	34.8	34.8				8.0		34.0				
Actuated g/C Ratio	0.37	0.37				0.09		0.37				
Clearance Time (s)	6.0	6.0				6.0		7.0				
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Lane Grp Cap (vph)	607	677				224		1820				
v/s Ratio Prot	007	c0.31				224		c0.32				
v/s Ratio Perm	0.01	60.51				c0.02		CU.32				
v/c Ratio	0.01	0.83				0.18		0.86				
Uniform Delay, d1	18.4	26.4				39.4		27.3				
Progression Factor	1.00	1.00				1.00		1.00				
Incremental Delay, d2	0.0	8.7				0.4		4.6				
Delay (s)	18.4	35.0				39.8		31.8				
Level of Service	10.4 B	33.0 D				39.0 D		31.0 C				
	Б	33.4			39.8	U		31.8			0.0	
Approach LOS		33.4 C			39.8 D			31.8 C			0.0 A	
Approach LOS		C			U			C			А	
Intersection Summary												
HCM 2000 Control Delay			33.6	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.79									
Actuated Cycle Length (s)			92.8		um of lost				17.0			
Intersection Capacity Utilizat	tion		63.3%	IC	U Level o	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM 2000 Control Delay	33.6	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.79			
Actuated Cycle Length (s)	92.8	Sum of lost time (s)	17.0	
Intersection Capacity Utilization	63.3%	ICU Level of Service	В	
Analysis Period (min)	15			
c Critical Lane Group				

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

09/30/2021

	•	-	•	•	—	•	4	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4î>			414	
Traffic Volume (vph)	5	0	6	129	0	71	2	322	518	130	694	0
Future Volume (vph)	5	0	6	129	0	71	2	322	518	130	694	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1250	1400	1250	1250	1250	1250
Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.76			0.72			0.67			0.98	
Frt		0.921			0.952			0.908				
Flt Protected		0.980			0.969						0.992	
Satd. Flow (prot)	0	1364	0	0	1549	0	0	1438	0	0	2020	0
Flt Permitted		0.898			0.798			0.954			0.643	
Satd. Flow (perm)	0	1178	0	0	1009	0	0	1372	0	0	1285	0
Right Turn on Red			Yes		1000	Yes		.0.2	Yes		.200	Yes
Satd. Flow (RTOR)		41	100		41	100		23	100			100
Link Speed (k/h)		50			40			50			50	
Link Distance (m)		106.6			106.9			249.2			212.5	
Travel Time (s)		7.7			9.6			17.9			15.3	
Confl. Peds. (#/hr)	180	1.1	338	338	3.0	180	356	17.3	263	263	10.0	356
Confl. Bikes (#/hr)	100		330	330		100	330		12	200		160
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
	0.92	2%	0.92	1%	0.92	4%	0.92	12%	1%	0.92	10%	0.92
Heavy Vehicles (%)	0%	2%	0%	1%	0%	4%	12	30		12	30	
Bus Blockages (#/hr)	5	0	7	140	0	77	2	350	30 563	141	754	30 0
Adj. Flow (vph)	5	U	- 1	140	U	11	2	350	503	141	754	U
Shared Lane Traffic (%)	0	12	0	٥	217	0	0	915	0	0	895	0
Lane Group Flow (vph)				0			-					0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.04	4.04	4.04		4.04	4.04	4 =0	4.00	4 =0	4 =0	4.00	4 =0
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.70	1.60	1.70	1.70	1.83	1.70
Turning Speed (k/h)	24	_	14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 27

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

Lanes, volumes, 1 1449: Dufferin St &	-	iberty S	St								09/3	0/2021
	۶	→	•	•	←	•	4	†	~	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Minimum Split (s)	24.0	24.0		24.0	24.0		25.0	25.0		25.0	25.0	
Total Split (s)	24.0	24.0		24.0	24.0		56.0	56.0		56.0	56.0	
Total Split (%)	30.0%	30.0%		30.0%	30.0%		70.0%	70.0%		70.0%	70.0%	
Maximum Green (s)	19.0	19.0		19.0	19.0		50.0	50.0		50.0	50.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-3.0			-1.0	
Total Lost Time (s)		4.0			4.0			3.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	100	100		100	100		100	100		100	100	
Act Effct Green (s)		19.6			19.6			53.4			51.4	
Actuated g/C Ratio		0.24			0.24			0.67			0.64	
v/c Ratio		0.04			0.78			1.18dr			1.08	
Control Delay		0.5			44.2			45.2			70.3	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		0.5			44.2			45.2			70.3	
LOS		Α			D			D			Е	
Approach Delay		0.5			44.2			45.2			70.3	
Approach LOS		Α			D			D			Е	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 40 (50%), Reference	ed to phase	2:NBTL a	ind 6:SB	ΓL, Start (of Green							
Natural Cycle: 90												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 1.08												
Intersection Signal Delay: 5	55.8				ntersection							
Intersection Capacity Utiliz	ation 105.49	%		IC	CU Level	of Service	e G					
nalysis Period (min) 15												
r Defacto Right Lane. Recode with 1 though lane as a right lane.												
Splits and Phases: 1449	: Dufferin St	t & Dwy/Li	berty St									
Ø2 (R)		<u> </u>	, 20					4	74			
								- x				

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Ø6 (R)

Synchro 11 Report Page 28

₩Ø8

1449: Dufferin St & Dwy/Liberty St

09/30/2021

Synchro 11 Report

Page 29

	-	•	Ť	¥
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	12	217	915	895
v/c Ratio	0.04	0.78	1.18dr	1.08
Control Delay	0.5	44.2	45.2	70.3
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	0.5	44.2	45.2	70.3
Queue Length 50th (m)	0.0	24.9	75.1	~75.8
Queue Length 95th (m)	0.5	#59.7	#115.0	m47.5
Internal Link Dist (m)	82.6	82.9	225.2	188.5
Turn Bay Length (m)				
Base Capacity (vph)	325	283	923	825
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.04	0.77	0.99	1.08

- Volume exceeds capacity, queue is theoretically infinite.
- Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

HCM Signalized Intersection Capacity Analysis

1449: Dufferin St & Dwy/Liberty St

09/30/2021

	٠	→	•	•	←	•	4	†	/	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्सी			414	
Traffic Volume (vph)	5	0	6	129	0	71	2	322	518	130	694	0
Future Volume (vph)	5	0	6	129	0	71	2	322	518	130	694	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1250	1400	1250	1250	1250	1250
Total Lost time (s)		4.0			4.0			3.0			5.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.80			0.91			0.67			1.00	
Flpb, ped/bikes		0.94			0.79			1.00			0.98	
Frt		0.92			0.95			0.91			1.00	
Flt Protected		0.98			0.97			1.00			0.99	
Satd. Flow (prot)		1286			1225			1437			1983	
Flt Permitted		0.90			0.80			0.95			0.64	
Satd. Flow (perm)		1178			1008			1371			1285	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	0	7	140	0	77	2	350	563	141	754	0
RTOR Reduction (vph)	0	9	0	0	31	0	0	8	0	0	0	0
Lane Group Flow (vph)	0	3	0	0	186	0	0	907	0	0	895	0
Confl. Peds. (#/hr)	180		338	338		180	356		263	263		356
Confl. Bikes (#/hr)									12			160
Heavy Vehicles (%)	0%	2%	0%	1%	0%	4%	0%	12%	1%	0%	10%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	12	30	30	12	30	30
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	. 0	4			8			2			6	
Permitted Phases	4			8	Ť		2			6		
Actuated Green, G (s)		18.6			18.6		_	50.4		-	50.4	
Effective Green, g (s)		19.6			19.6			53.4			51.4	
Actuated g/C Ratio		0.25			0.25			0.67			0.64	
Clearance Time (s)		5.0			5.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		288			246			915			825	
v/s Ratio Prot		200			210			010			020	
v/s Ratio Perm		0.00			c0.18			0.66			c0.70	
v/c Ratio		0.00			0.76			1.18dr			1.08	
Uniform Delay, d1		22.9			28.0			13.1			14.3	
Progression Factor		1.00			1.00			1.22			2.12	
Incremental Delay, d2		0.0			12.4			27.5			40.5	
Delay (s)		22.9			40.4			43.4			70.9	
Level of Service		C			D			D			7 G.S	
Approach Delay (s)		22.9			40.4			43.4			70.9	
Approach LOS		C C			40.4 D			45.4 D			70.5 E	
Intersection Summary												
HCM 2000 Control Delay			55.1	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capacit	v ratio		0.99	11	OW 2000	L040101	001 4100		_			
Actuated Cycle Length (s)	, , , , , , , ,		80.0	Q ₁	um of lost	time (s)			9.0			
Intersection Capacity Utilization	n		105.4%		U Level o				9.0 G			
Analysis Period (min)	/11		15	IC	O LEVEL	, oei vide			9			
dr Defacto Right Lane. Rec	ode with	1 though		right land								
c Critical Lane Group	OGG WILL	alougiii	une as a	ngiit iaile								

c Critical Lane Group

	۶	-	\rightarrow	•	←	•	4	†	1	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4î>			414			414			414	
Traffic Volume (vph)	21	676	17	0	596	103	63	226	19	128	87	116
Future Volume (vph)	21	676	17	0	596	103	63	226	19	128	87	116
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Lane Util, Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.99			0.98			0.96		****	0.88	
Frt		0.996			0.978			0.991			0.947	
Flt Protected		0.999						0.990			0.981	
Satd. Flow (prot)	0	1815	0	0	1809	0	0	3071	0	0	2346	0
Flt Permitted		0.919						0.795			0.700	
Satd. Flow (perm)	0	1669	0	0	1809	0	0	2394	0	0	1622	0
Right Turn on Red			Yes		1000	Yes		200.	Yes		.022	Yes
Satd. Flow (RTOR)		6			45	100		10			133	. 00
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		199.1			255.2			127.7			380.6	
Travel Time (s)		14.3			18.4			11.5			34.3	
Confl. Peds. (#/hr)	90	17.0	289	289	10.4	90	239	11.0	126	126	07.0	239
Confl. Bikes (#/hr)	30		203	200		25	200		120	120		200
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	100%	7%	0.07	100%	8%	2%	5%	1%	0.07	33%	2%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0 /0	0	0	0
Adj. Flow (vph)	24	777	20	0	685	118	72	260	22	147	100	133
Shared Lane Traffic (%)	24	111	20	U	000	110	12	200	22	147	100	133
	0	821	0	0	803	0	0	354	0	0	380	0
Lane Group Flow (vph) Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left 0.0	Right	Left	Left 0.0	Right	Left	Left 0.0	Right	Left	Left 0.0	Right
Median Width(m)		0.0			0.0							
Link Offset(m)								0.0 4.8			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.00	0.00	4.00	4.00	0.00	4.00	4.40	4.40	4.40	4.40	4.40	1.16
Headway Factor	1.92	2.03	1.92	1.92	2.03	1.92 14	1.16	1.16	1.16	1.16	1.16	
Turning Speed (k/h)	= "	_	14		_	14	= "	0	14	= -	_	14
Number of Detectors	1	2		1	2		1 Left	2		1 Left	2	
Detector Template	Left	Thru		Left	Thru			Thru			Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 31

Lanes, Volumes, Timings 1628: Shaw St & King St

	۶	-	\rightarrow	•	•	•	4	†	1	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	22.0	22.0		22.0	22.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	28.0	28.0		28.0	28.0		26.0	26.0		26.0	26.0	
Total Split (s)	44.0	44.0		44.0	44.0		26.0	26.0		26.0	26.0	
Total Split (%)	62.9%	62.9%		62.9%	62.9%		37.1%	37.1%		37.1%	37.1%	
Maximum Green (s)	38.0	38.0		38.0	38.0		20.0	20.0		20.0	20.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	15.0	15.0		15.0	15.0		13.0	13.0		13.0	13.0	
Pedestrian Calls (#/hr)	100	100		29	29		100	100		100	100	
Act Effct Green (s)		39.0			39.0			21.0			21.0	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
v/c Ratio		0.88			0.78			0.49			0.66	
Control Delay		27.0			18.4			22.3			19.9	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		27.0			18.4			22.3			19.9	
LOS		C			В			C			В	
Approach Delay		27.0			18.4			22.3			19.9	
Approach LOS		C C			В			C			В	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 1 (1%), Referenced	to phase 2	EBTL and	6:WBTL	, Start of	1st Green							
Natural Cycle: 65												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.88												
Intersection Signal Delay: 2	22.2			lr	ntersection	LOS: C						
Intersection Capacity Utiliza	ation 104.29	%		IC	CU Level o	of Service	G					
Analysis Period (min) 15												
Splits and Phases: 1628	: Shaw St 8	King St										
A		-					⊸÷					
→ø2 (R)								34				
44 s							26 s					

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 32

1628: Shaw St & King St

09/30/2021

	-	•	†	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	821	803	354	380
v/c Ratio	0.88	0.78	0.49	0.66
Control Delay	27.0	18.4	22.3	19.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	27.0	18.4	22.3	19.9
Queue Length 50th (m)	44.5	37.4	19.2	14.2
Queue Length 95th (m)	#79.6	57.2	29.5	26.9
Internal Link Dist (m)	175.1	231.2	103.7	356.6
Turn Bay Length (m)				
Base Capacity (vph)	932	1027	725	579
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.88	0.78	0.49	0.66

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis

1628: Shaw St & King St

09/30/2021

1020. Shaw St & K	.ing 3t				+	•	•	•		_	1	سالم
Movement	EBL	EBT	₹ EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	♥ SBT	SBR
Lane Configurations	EDL	473	EDIN	WDL	4P	WDK	INDL	47	INDIX	SDL	413	ODN
Traffic Volume (vph)	21	676	17	0	596	103	63	226	19	128	87	116
Future Volume (vph)	21	676	17	0	596	103	63	226	19	128	87	116
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Total Lost time (s)	1200	5.0	1200	1200	5.0	1200	1000	5.0	1000	1000	5.0	1000
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.99			0.98			0.99			0.91	
Flpb, ped/bikes		1.00			1.00			0.97			0.97	
Frt		1.00			0.98			0.99			0.95	
Flt Protected		1.00			1.00			0.99			0.98	
Satd. Flow (prot)		1814			1809			2980			2275	
Flt Permitted		0.92			1.00			0.80			0.70	
Satd. Flow (perm)		1669			1809			2393			1623	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	24	777	20	0	685	118	72	260	22	147	100	133
RTOR Reduction (vph)	0	3	0	0	20	0	0	7	0	0	93	0
Lane Group Flow (vph)	0	818	0	0	783	0	0	347	0	0	287	0
Confl. Peds. (#/hr)	90		289	289		90	239		126	126		239
Confl. Bikes (#/hr)						25						
Heavy Vehicles (%)	100%	7%	0%	100%	8%	2%	5%	1%	0%	33%	2%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		38.0			38.0			20.0			20.0	
Effective Green, g (s)		39.0			39.0			21.0			21.0	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		929			1007			717			486	
v/s Ratio Prot					0.43							
v/s Ratio Perm		c0.49						0.14			c0.18	
v/c Ratio		0.88			0.78			0.48			0.59	
Uniform Delay, d1		13.5			12.1			20.1			20.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		11.8			5.9			0.5			1.9	
Delay (s)		25.2			18.0			20.6			22.8	
Level of Service		С			В			С			С	
Approach Delay (s)		25.2			18.0			20.6			22.8	
Approach LOS		С			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			21.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.78									
Actuated Cycle Length (s)	, i		70.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utiliza	ition		104.2%	IC	U Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

HDR Corporation

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements

09/30/2021

Lane Configurations		•	-	•	•	←	•	4	†	~	/	ļ	4
Traffic Volume (vph) 0 791 5 0 681 114 0 5 0 166 0 96 Future Volume (vph) 0 791 5 0 681 114 0 5 0 166 0 96 Ideal Flow (vphpl) 1250 1250 1250 1250 1250 1250 190 1900	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL		NBR	SBL	SBT	SBR
Traffic Volume (vph) 0 791 5 0 681 114 0 5 0 166 0 96 Future Volume (vph) 0 791 5 0 681 114 0 5 0 166 0 96 Ideal Flow (vphpl) 1250 1250 1250 1250 1250 1250 190 1900	Lane Configurations		414			414			4			4	
Ideal Flow (vphpl)	Traffic Volume (vph)	0	791	5	0	681	114	0		0	166	0	96
Lane Util. Factor	Future Volume (vph)	0	791	5	0	681	114	0	5	0	166	0	96
Ped Bike Factor	Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Fit Protected	Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected	Ped Bike Factor		1.00			0.98						0.90	
Satd. Flow (prot)			0.999			0.978						0.951	
Fit Permitted	Flt Protected											0.969	
Satd. Flow (perm)	Satd. Flow (prot)	0	1701	0	0	1740	0	0	1409	0	0	1350	0
Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Stad: Flow (RTOR) 1 42 42 42 42 42 42 43 49 49 49 41 52 50 50 50 50 50 50 50 50 50 50 50 50 50 60 40 41 41 41 41 41 42 42 <td>FIt Permitted</td> <td></td> <td>0.804</td> <td></td>	FIt Permitted											0.804	
Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Stad: Flow (RTOR) 1 42 42 42 42 42 42 43 49 49 49 41 52 50 50 50 50 50 50 50 50 50 50 50 50 50 60 40 41 41 41 41 41 42 42 <td>Satd. Flow (perm)</td> <td>0</td> <td>1701</td> <td>0</td> <td>0</td> <td>1740</td> <td>0</td> <td>0</td> <td>1409</td> <td>0</td> <td>0</td> <td>1081</td> <td>0</td>	Satd. Flow (perm)	0	1701	0	0	1740	0	0	1409	0	0	1081	0
Link Speed (k/h) 50 50 50 50 Link Distance (m) 318.4 199.1 158.6 196.7 Travel Time (s) 22.9 14.3 11.4 14.2 Confl. Peds. (#/hr) 78 219 219 78 158 49 49 49 158 Confl. Bikes (#/hr) 16 16 16 18 18 0.88				Yes			Yes			Yes			Yes
Link Speed (k/h) 50 50 50 50 50 Link Distance (m) 318.4 199.1 158.6 196.7 196.7 158.6 196.7 158.6 196.7 158.6 196.7 158.6 196.7 158.6 196.7 158.6 196.7 158.7	Satd. Flow (RTOR)		1			41						41	
Travel Time (s) 22.9 14.3 11.4 14.2 15.2 15.5 15.6 15.5 15.			50			50			50			50	
Travel Time (s) 22.9 14.3 11.4 14.2 Confi. Peds. (#/hr) 78 219 219 78 158 49 49 158 Confi. Peds. (#/hr) 16	Link Distance (m)		318.4			199.1			158.6			196.7	
Confl. Peds. (#/hr) 78 219 219 78 158 49 49 158 Confl. Bikes (#/hr) - 16 Peak Hour Factor 0.88 0.80 0.80 0						14.3			11.4			14.2	
Confl. Bikes (#/hr)		78		219	219		78	158		49	49		158
Peak Hour Factor 0.88 0.80 0.0 0.0 0.0 0.0 0.0							16						
Heavy Vehicles (%)		0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Bus Blockages (#/hr) 24 24 24 24 24 24 24 0 109 0 109 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10%</td></t<>													10%
Adj. Flow (vph) 0 899 6 0 774 130 0 6 0 189 0 109 Shared Lane Traffic (%) Lane Group Flow (vph) 0 905 0 0 904 0 0 6 0 0 298 0 Enter Blocked Intersection No													0
Shared Lane Traffic (%) Lane Group Flow (vph) 0 905 0 0 904 0 0 6 0 0 298 0													109
Lane Group Flow (vph) 0 905 0 0 904 0 0 6 0 0 298 0 Enter Blocked Intersection No													
Enter Blocked Intersection No		0	905	0	0	904	0	0	6	0	0	298	0
Median Width(m) 0.0 0.0 0.0 0.0		No	No	No	No	No	No	No	No	No	No	No	No
Median Width(m) 0.0 0.0 0.0	Lane Alignment	Left	Left	Right	Left	Left	Riaht	Left	Left	Right	Left	Left	Right
			0.0	J -		0.0	J		0.0	J			J .
			0.0			0.0			0.0			0.0	
Crosswalk Width(m) 4.8 4.8 4.8 4.8			4.8			4.8			4.8			4.8	
Two way Left Turn Lane													
		1.92	2.03	1.92	1.92	2.03	1.92	1.16	1.16	1.16	1.16	1.16	1.16
		24		14	24		14	24		14	24		14
Number of Detectors 1 2 1 2 1 2 1 2	Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template Left Thru Left Thru Left Thru Left Thru	Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 30.5 6.1 30.5	Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m) 6.1 1.8 6.1 1.8 6.1 1.8 6.1 1.8	Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex	Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel													
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	0.0			0.0		0.0	0.0			0.0	
Detector 2 Position(m) 28.7 28.7 28.7 28.7			28.7			28.7			28.7			28.7	
Detector 2 Size(m) 1.8 1.8 1.8 1.8			1.8			1.8			1.8			1.8	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	()												
Detector 2 Channel			^			M			<u>-</u> .,				
Detector 2 Extend (s) 0.0 0.0 0.0			0.0			0.0			0.0			0.0	
Turn Type NA NA NA Perm NA											Perm		

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 35 Lanes, Volumes, Timings

1851: King St & S	udbury S	St									09/3	30/202
	۶	→	•	•	←	•	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	24.0	24.0		24.0	24.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	30.0	30.0		30.0	30.0		26.0	26.0		26.0	26.0	
Total Split (s)	52.0	52.0		52.0	52.0		28.0	28.0		28.0	28.0	
Total Split (%)	65.0%	65.0%		65.0%	65.0%		35.0%	35.0%		35.0%	35.0%	
Maximum Green (s)	46.0	46.0		46.0	46.0		23.0	23.0		23.0	23.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	17.0	17.0		17.0	17.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		24	24		100	100		16	16	
Act Effct Green (s)		47.5			47.5			23.5			23.5	
Actuated g/C Ratio		0.59			0.59			0.29			0.29	
v/c Ratio		0.90			0.86			0.01			0.86	
Control Delay		28.3			23.8			20.0			48.5	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		28.3			23.8			20.0			48.5	
LOS		С			С			В			D	
Approach Delay		28.3			23.8			20.0			48.5	
Approach LOS		С			С			В			D	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 80	CDD											
Actuated Cycle Length: 80												
Offset: 1 (1%), Referenced		·EDTI one	I G-\M/DTI	Start of	1ct Croon							
Natural Cycle: 75	to priase z	.EDIL alic	I O.WIDIL	., Start Or	ist Green							
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.90	Ulullialeu											
Intersection Signal Delay:	20.2			l.	ntersection	100.0						
Intersection Capacity Utiliz					CU Level		. C					
Analysis Period (min) 15	alion 72.270)		ľ	DO LEVEI (JI SEIVICE	50					
	· Kina Ct 0	Cudhur C	•									
	: King St &	Suubury S	ι									
→ Ø2 (R)							1.1	04				

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

1851: King St & Sudbury St

09/30/2021

	-	←	†	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	905	904	6	298
v/c Ratio	0.90	0.86	0.01	0.86
Control Delay	28.3	23.8	20.0	48.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	28.3	23.8	20.0	48.5
Queue Length 50th (m)	58.0	53.3	0.6	36.7
Queue Length 95th (m)	#99.8	#94.7	3.1	#76.9
Internal Link Dist (m)	294.4	175.1	134.6	172.7
Turn Bay Length (m)				
Base Capacity (vph)	1010	1049	422	353
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.90	0.86	0.01	0.84

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1851: King St & Sudbury St

	۶	→	•	•	+	4	4	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			4			4	
Traffic Volume (vph)	0	791	5	0	681	114	0	5	0	166	0	96
Future Volume (vph)	0	791	5	0	681	114	0	5	0	166	0	96
Ideal Flow (vphpl)	1250	1250	1250	1250	1250	1250	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			4.0			4.0	
Lane Util. Factor		0.95			0.95			1.00			1.00	
Frpb, ped/bikes		1.00			0.98			1.00			0.93	
Flpb, ped/bikes		1.00			1.00			1.00			0.96	
Frt		1.00			0.98			1.00			0.95	
Flt Protected		1.00			1.00			1.00			0.97	
Satd. Flow (prot)		1701			1741			1409			1302	
Flt Permitted		1.00			1.00			1.00			0.80	
Satd. Flow (perm)		1701			1741			1409			1080	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	0	899	6	0	774	130	0	6	0	189	0	109
RTOR Reduction (vph)	0	0	0	0	17	0	0	0	0	0	29	0
Lane Group Flow (vph)	0	905	0	0	887	0	0	6	0	0	269	0
Confl. Peds. (#/hr)	78		219	219		78	158		49	49		158
Confl. Bikes (#/hr)						16						
Heavy Vehicles (%)	0%	18%	0%	0%	11%	8%	0%	20%	0%	6%	0%	10%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA			NA			NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)		46.5			46.5			22.5			22.5	
Effective Green, g (s)		47.5			47.5			23.5			23.5	
Actuated g/C Ratio		0.59			0.59			0.29			0.29	
Clearance Time (s)		6.0			6.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1009			1033			413			317	
v/s Ratio Prot		c0.53			0.51			0.00				
v/s Ratio Perm											c0.25	
v/c Ratio		0.90			0.86			0.01			0.85	
Uniform Delay, d1		14.1			13.5			20.0			26.6	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		12.2			9.3			0.0			18.6	
Delay (s)		26.4			22.7			20.1			45.2	
Level of Service		С			С			С			D	
Approach Delay (s)		26.4			22.7			20.1			45.2	
Approach LOS		С			С			С			D	
Intersection Summary												
HCM 2000 Control Delay			27.4	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	ratio		0.88									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilization	1		72.2%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	27.4	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.88			
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	9.0	
Intersection Capacity Utilization	72.2%	ICU Level of Service	С	
Analysis Period (min)	15			
0 111 0				

c Critical Lane Group

	-	•	•	•	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 1>			41	ኘ	7
Traffic Volume (vph)	697	83	4	779	299	180
Future Volume (vph)	697	83	4	779	299	180
Ideal Flow (vphpl)	1250	1250	1250	1250	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.0	3.0
Storage Length (m)	0.0	0.0	0.0	0.0	30.0	0.0
Storage Lanes		0.0	0.0		1	1
Taper Length (m)		J	7.5		7.5	
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Ped Bike Factor	0.94	0.00	0.00	1.00	0.95	0.95
Frt	0.984			1.00	0.93	0.850
FIt Protected	0.304				0.950	0.000
Satd. Flow (prot)	1689	0	0	1821	1458	1159
Flt Permitted	1009	U	U	0.950	0.950	1109
	1600	0	0			1000
Satd. Flow (perm)	1689	0	0	1729	1383	1099
Right Turn on Red	20	Yes				Yes
Satd. Flow (RTOR)	29			F.0	00	19
Link Speed (k/h)	50			50	30	
Link Distance (m)	191.3			318.4	198.0	
Travel Time (s)	13.8	000	200	22.9	23.8	0.0
Confl. Peds. (#/hr)		388	388		49	39
Confl. Bikes (#/hr)		10				
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	11%	6%	100%	10%	4%	17%
Bus Blockages (#/hr)	24	24	24	24	0	0
Adj. Flow (vph)	810	97	5	906	348	209
Shared Lane Traffic (%)						
Lane Group Flow (vph)	907	0	0	911	348	209
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	2.03	1.92	1.92	2.03	1.25	1.25
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (m)	30.5		6.1	30.5	6.1	6.1
Trailing Detector (m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Size(m)	1.8		6.1	1.8	6.1	6.1
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel	OIFLX		OIYLX	OITEX	OLYLA	OLYLX
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)			0.0		0.0	0.0
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

	-	\rightarrow	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Perm	NA	Perm	Perm
Protected Phases	2			6		
Permitted Phases			6		8	8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	21.0		21.0	21.0	20.0	20.0
Minimum Split (s)	28.0		28.0	28.0	26.0	26.0
Total Split (s)	44.0		44.0	44.0	26.0	26.0
Total Split (%)	62.9%		62.9%	62.9%	37.1%	37.1%
Maximum Green (s)	37.0		37.0	37.0	20.0	20.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	3.0		3.0	3.0	2.0	2.0
Lost Time Adjust (s)	-1.0			-1.0	-1.0	-1.0
Total Lost Time (s)	6.0			6.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	C-Max		C-Max	C-Max	None	None
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	14.0		14.0	14.0	13.0	13.0
Pedestrian Calls (#/hr)	100		7	7	16	16
Act Effct Green (s)	38.0			38.0	21.0	21.0
Actuated g/C Ratio	0.54			0.54	0.30	0.30
v/c Ratio	0.98			0.97	0.84	0.61
Control Delay	41.8			41.3	43.7	27.9
Queue Delay	0.0			0.0	0.0	0.0
Total Delay	41.8			41.3	43.7	27.9
LOS	D			D	D	С
Approach Delay	41.8			41.3	37.8	
Approach LOS	D			D	D	
Intersection Summary						
Area Type:	CBD					
Cycle Length: 70						
Actuated Cycle Length: 7						
Offset: 6 (9%), Reference	ed to phase 2:E	BT and	6:WBTL,	Start of 1	st Green	
Natural Cycle: 90						
Control Type: Actuated-C						
Maximum v/c Ratio: 0.98						
Intersection Signal Delay					ntersectio	
Intersection Capacity Util				I(CU Level	of Service
Analysis Period (min) 15						
Splits and Phases: 19	12: Atlantic Ave	& Kina	St			
i e	12.710011007100	, a rang	<u> </u>			
→ø2 (R)						

1912: Atlantic Ave & King St

09/30/2021

Synchro 11 Report

Page 41

	-	•	1	
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	907	911	348	209
v/c Ratio	0.98	0.97	0.84	0.61
Control Delay	41.8	41.3	43.7	27.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	41.8	41.3	43.7	27.9
Queue Length 50th (m)	54.4	55.7	42.2	21.0
Queue Length 95th (m)	#90.6	#91.1	#78.3	39.5
Internal Link Dist (m)	167.3	294.4	174.0	
Turn Bay Length (m)			30.0	
Base Capacity (vph)	930	938	414	343
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.98	0.97	0.84	0.61

HCM Signalized Intersection Capacity Analysis 1912: Atlantic Ave & King St

09/30/2021

	→	\rightarrow	•	•	4	<i>></i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† Ъ			414	*	#		
Traffic Volume (vph)	697	83	4	779	299	180		
Future Volume (vph)	697	83	4	779	299	180		
Ideal Flow (vphpl)	1250	1250	1250	1250	1900	1900		
ane Width	3.5	3.5	3.5	3.5	3.0	3.0		
Total Lost time (s)	6.0	0.0	0.0	6.0	5.0	5.0		
Lane Util. Factor	0.95			0.95	1.00	1.00		
Frpb, ped/bikes	0.94			1.00	1.00	0.95		
Flpb, ped/bikes	1.00			1.00	0.95	1.00		
Frt	0.98			1.00	1.00	0.85		
Flt Protected	1.00			1.00	0.95	1.00		
Satd, Flow (prot)	1689			1819	1383	1099		
Flt Permitted	1.00			0.95	0.95	1.00		
Satd. Flow (perm)	1689			1729	1383	1099		
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.86	0.86		
Adj. Flow (vph)	810	97	5	906	348	209		
RTOR Reduction (vph)	13	0	0	0	0	13		
Lane Group Flow (vph)	894	0	0	911	348	196		
Confl. Peds. (#/hr)	001	388	388	011	49	39		
Confl. Bikes (#/hr)		10	000		-10	00		
Heavy Vehicles (%)	11%	6%	100%	10%	4%	17%		
Bus Blockages (#/hr)	24	24	24	24	0	0		
Turn Type	NA		Perm	NA	Perm	Perm		
Protected Phases	2		7 61111	6	7 61111	1 01111		
Permitted Phases	_		6	- 3	8	8		
Actuated Green, G (s)	37.0		J	37.0	20.0	20.0		
Effective Green, g (s)	38.0			38.0	21.0	21.0		
Actuated g/C Ratio	0.54			0.54	0.30	0.30		
Clearance Time (s)	7.0			7.0	6.0	6.0		
Vehicle Extension (s)	3.0			3.0	3.0	3.0		
Lane Grp Cap (vph)	916			938	414	329		
v/s Ratio Prot	c0.53			900	414	323		
v/s Ratio Prot	00.00			0.53	c0.25	0.18		
v/c Ratio	0.98			0.53	0.84	0.10		
Uniform Delay, d1	15.6			15.5	22.9	20.9		
Progression Factor	1.00			1.00	1.00	1.00		
Incremental Delay, d2	24.4			23.2	14.2	2.9		
Delay (s)	40.0			38.7	37.2	2.9		
Level of Service	40.0 D			30.1 D	37.2 D	23.0 C		
	40.0			38.7	32.1	U		
Approach Delay (s)	40.0 D			38.7 D	32.1 C			
Approach LOS	ט			ט	U			
ntersection Summary								
HCM 2000 Control Delay			37.6	H	CM 2000	Level of Serv	ce	
HCM 2000 Volume to Capac	city ratio		0.94					
Actuated Cycle Length (s)			70.0	Si	um of lost	time (s)		
Intersection Capacity Utilizat	tion		68.7%	IC	U Level c	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group

Lane Configurations Traffic Volume (vph)

Future Volume (vph)

Ideal Flow (vphpl)

Lane Util. Factor

Ped Bike Factor

Satd. Flow (prot)

Satd. Flow (perm)

Right Turn on Red

Satd. Flow (RTOR)

Link Speed (k/h)

Link Distance (m)

Confl. Peds. (#/hr)

Confl. Bikes (#/hr) Peak Hour Factor

Heavy Vehicles (%)

Bus Blockages (#/hr)

Shared Lane Traffic (%) Lane Group Flow (vph)

Enter Blocked Intersection

Adj. Flow (vph)

Lane Alignment

Link Offset(m)

Median Width(m)

Crosswalk Width(m)

Turning Speed (k/h)

Number of Detectors

Detector Template

Leading Detector (m)

Trailing Detector (m)

Detector 1 Size(m)

Detector 1 Channel
Detector 1 Extend (s)

Detector 1 Queue (s)

Detector 1 Delay (s)

Detector 2 Size(m)

Detector 2 Channel

Detector 2 Extend (s)

Detector 2 Type

Turn Type

Detector 2 Position(m)

Detector 1 Type

Detector 1 Position(m)

Two way Left Turn Lane Headway Factor

Travel Time (s)

Flt Protected

Flt Permitted

→ ← < √ √

79 144

1250 1900

0.95 1.00

0.99

0.969

0.963

0.963

17

50

100.8

7.3

0.88

3% 21%

212

No

Left

3.5

0.0

4.8

1.16 1.16

24

6.1

0.0

0.0

6.1

0.0

0.0

0.0

Perm

CI+Ex

0

0 1460

0 1460

43

0.88

3%

24

90 164

No

Right

1.92

42

1900

1.00

0

0

Yes

23

0.88

0

48

No

Right

EBT

862

0.95

0 1881

0 1881

635

1250

0.95

0.99

0.983

1819

1819

34

50

13.8

0.88

8%

24

722

812

No

Left

0.0

0.0

4.8

2.03

Thru

0.0

0.0

1.8

0.0

0.0

0.0

0.0

NA

2

316.7 191.3

22.8

0.88

24

980

No

Left

0.0

0.0

4.8

2.03

2

Thru

0.0

0.0

1.8

0.0

0.0

0.0

28.7 28.7

1.8 1.8

0.0

NA

CI+Ex CI+Ex

CI+Ex CI+Ex CI+Ex

0 862

1250 1250

43

0.88

0%

24

0 980

No

Left

1.92

24

1

6.1 30.5 30.5

0.0

0.0

0.0

0.0

0.0

0.95

	•	-	←	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Protected Phases		2	6			
Permitted Phases	2				8	
Detector Phase	2	2	6		8	
Switch Phase						
Minimum Initial (s)	20.0	20.0	20.0		18.0	
Minimum Split (s)	26.0	26.0	26.0		23.0	
Total Split (s)	57.0	57.0	57.0		23.0	
Total Split (%)	71.3%	71.3%	71.3%		28.8%	
Maximum Green (s)	51.0	51.0	51.0		18.0	
Yellow Time (s)	4.0	4.0	4.0		3.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)		-1.0	-1.0		-1.0	
Total Lost Time (s)		5.0	5.0		4.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0		3.0	
Recall Mode	C-Max	C-Max	None		None	
Walk Time (s)	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	13.0	13.0	13.0		11.0	
Pedestrian Calls (#/hr)	100	100	13		7	
Act Effct Green (s)		52.0	52.0		19.0	
Actuated g/C Ratio		0.65	0.65		0.24	
v/c Ratio		0.80	0.68		0.59	
Control Delay		16.4	12.0		32.5	
Queue Delay		0.0	0.0		0.0	
Total Delay		16.4	12.0		32.5	
LOS		В	В		С	
Approach Delay		16.4	12.0		32.5	
Approach LOS		В	В		С	
Intersection Summary						
Area Type:	CBD					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 1 (1%), Referenced		EBTL, St	art of Gree	en		
Natural Cycle: 65	,	,				
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.80						
Intersection Signal Delay:	16.3			In	tersection	LOS: B
Intersection Capacity Utiliz				IC	U Level o	f Service B
Analysis Period (min) 15						

Splits and Phases:	2081: King St & Joe Shuster Way	
Ø2 (R)		
57 s		
← Ø6		Ø8
57 s		23 s

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 43 Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

2081: King St & Joe Shuster Way

09/30/2021

Synchro 11 Report

Page 45

	_	←	· /•
			•
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	980	812	212
v/c Ratio	0.80	0.68	0.59
Control Delay	16.4	12.0	32.5
Queue Delay	0.0	0.0	0.0
Total Delay	16.4	12.0	32.5
Queue Length 50th (m)	50.3	34.0	26.3
Queue Length 95th (m)	m34.1	50.9	46.3
Internal Link Dist (m)	292.7	167.3	76.8
Turn Bay Length (m)			
Base Capacity (vph)	1222	1194	359
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.80	0.68	0.59
Interception Cummen			

HCM Signalized Intersection Capacity Analysis 2081: King St & Joe Shuster Way

09/30/2021

	•	-	•	•	\	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		4₽	↑ ↑		Y			
Traffic Volume (vph)	0	862	635	79	144	42		
Future Volume (vph)	0	862	635	79	144	42		
Ideal Flow (vphpl)	1250	1250	1250	1250	1900	1900		
Total Lost time (s)		5.0	5.0		4.0			
Lane Util. Factor		0.95	0.95		1.00			
Frpb, ped/bikes		1.00	0.99		0.99			
Flpb, ped/bikes		1.00	1.00		1.00			
Frt		1.00	0.98		0.97			
Flt Protected		1.00	1.00		0.96			
Satd. Flow (prot)		1881	1820		1460			
FIt Permitted		1.00	1.00		0.96			
Satd. Flow (perm)		1881	1820		1460			
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88		
Adj. Flow (vph)	0	980	722	90	164	48		
RTOR Reduction (vph)	0	0	12	0	13	0		
Lane Group Flow (vph)	0	980	800	0	199	0		
Confl. Peds. (#/hr)	43			43		23		
Confl. Bikes (#/hr)				5				
Heavy Vehicles (%)	0%	7%	8%	3%	3%	21%		
Bus Blockages (#/hr)	24	24	24	24	0	0		
Turn Type		NA	NA		Perm	-		
Protected Phases		2	6					
Permitted Phases	2				8			
Actuated Green, G (s)	=	51.0	51.0		18.0			
Effective Green, q (s)		52.0	52.0		19.0			
Actuated g/C Ratio		0.65	0.65		0.24			
Clearance Time (s)		6.0	6.0		5.0			
Vehicle Extension (s)		3.0	3.0		3.0			
Lane Grp Cap (vph)		1222	1183		346			
v/s Ratio Prot		c0.52	0.44		010			
v/s Ratio Perm		00.02	0.11		c0.14			
v/c Ratio		0.80	0.68		0.58			
Uniform Delay, d1		10.2	8.7		26.9			
Progression Factor		1.43	1.00		1.00			
Incremental Delay, d2		0.5	1.5		2.3			
Delay (s)		15.1	10.3		29.2			
Level of Service		В	В		C			
Approach Delay (s)		15.1	10.3		29.2			
Approach LOS		В	В		C			
Intersection Summary								
HCM 2000 Control Delay			14.7	Н	CM 2000	Level of Service	В	
HCM 2000 Volume to Capaci	tv ratio		0.75					
Actuated Cycle Length (s)	.,		80.0	Sı.	um of lost	time (s)	10.0	
Intersection Capacity Utilization	on		62.7%		U Level c	. ,	В	
Analysis Period (min)	U.1		15	10	C LOVOI C	5011100		
c Critical Lane Group			13					

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements

m Volume for 95th percentile queue is metered by upstream signal.

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

	U2.

	•	•	†	~	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	11.5 1	7	7	<u> </u>
Traffic Volume (vph)	14	61	465	30	146	689
Future Volume (vph)	14	61	465	30	146	689
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.0	3.5	3.0	3.0	3.5
Storage Length (m)	30.0	0.0	0.0	15.0	30.0	0.0
Storage Lanes	1	1		13.0	1	
Taper Length (m)	7.5				7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	0.97	1.00	1.00
Frt		0.850		0.850	1.00	
Fit Protected	0.950	0.000		0.000	0.950	
		1112	1007	1270		1007
Satd. Flow (prot)	1560	1113	1807	1370	1276	1807
Flt Permitted	0.950	4446	1005	1000	0.388	4005
Satd. Flow (perm)	1560	1113	1807	1326	519	1807
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		73		15		
Link Speed (k/h)	30		30			30
Link Distance (m)	148.7		265.9			191.3
Travel Time (s)	17.8		31.9			23.0
Confl. Peds. (#/hr)				8	8	
Confl. Bikes (#/hr)				1		
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	8%	30%	4%	10%	32%	4%
Bus Blockages (#/hr)	0	10	0	0	0	0
Adj. Flow (vph)	17	73	554	36	174	820
Shared Lane Traffic (%)						
Lane Group Flow (vph)	17	73	554	36	174	820
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.0	rugiit	3.0	rugill	Lon	3.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane	4.0		4.0			4.0
	1.00	1 1E	1.01	1.09	1.00	1.01
Headway Factor	1.09	1.15	1.01	1.09	1.09	1.01
Turning Speed (k/h)			^			0
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (m)	6.1	6.1	30.5	6.1	6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	6.1	1.8	6.1	6.1	1.8
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)			28.7			28.7
Detector 2 Size(m)			1.8			1.8
Detector & OIZE(III)			1.0			1.0

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 47

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

	•	•	†	~	>	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Detector 2 Type			CI+Ex			CI+Ex	
Detector 2 Channel							
Detector 2 Extend (s)			0.0			0.0	
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA	
Protected Phases		1	2		1	6	
Permitted Phases	8	8		2	6		
Detector Phase	8	1	2	2	1	6	
Switch Phase							
Minimum Initial (s)	21.0	6.0	27.0	27.0	6.0	27.0	
Minimum Split (s)	26.0	10.0	34.0	34.0	10.0	34.0	
Total Split (s)	26.0	13.0	41.0	41.0	13.0	54.0	
Total Split (%)	32.5%	16.3%	51.3%	51.3%	16.3%	67.5%	
Maximum Green (s)	21.0	9.0	34.0	34.0	9.0	47.0	
Yellow Time (s)	3.0	3.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	2.0	1.0	3.0	3.0	1.0	3.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	3.0	6.0	6.0	3.0	6.0	
Lead/Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	C-Max	C-Max	None	C-Max	
Walk Time (s)	7.0		7.0	7.0		0.0	
Flash Dont Walk (s)	14.0		20.0	20.0		0.0	
Pedestrian Calls (#/hr)	0		2	2		0	
Act Effct Green (s)	22.0	13.1	57.9	57.9	71.8	73.6	
Actuated g/C Ratio	0.28	0.16	0.72	0.72	0.90	0.92	
v/c Ratio	0.04	0.30	0.42	0.04	0.32	0.49	
Control Delay	21.7	8.4	8.7	5.7	2.6	2.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.7	8.4	8.7	5.7	2.6	2.6	
LOS	С	Α	Α	Α	Α	Α	
Approach Delay	10.9		8.5			2.6	
Approach LOS	В		Α			Α	
Intersection Summary							
Area Type:	Other						
Cycle Length: 80							
Actuated Cycle Length: 80							
Offset: 15 (19%), Referenc	ed to phase	2:NBT a	nd 6:SBT	L, Start o	f 1st Gree	en	
Natural Cycle: 70							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.49							
Intersection Signal Delay: 5	5.1				ntersectio		
Intersection Capacity Utiliza	ation 62.1%			10	CU Level	of Service	В
Analysis Period (min) 15							
Splits and Phases: 2134	: British Col	ombia Ro	I/Dufferin	St & Sasi	katchewa	n Rd	
1/2	4 .	OIIIDIA 110	Danonii	01 0 000	natorio wa	iiitu	
™ Ø1	Ø2 (R)						

2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

Synchro 11 Report

Page 49

	•	*	†	~	-	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	17	73	554	36	174	820
v/c Ratio	0.04	0.30	0.42	0.04	0.32	0.49
Control Delay	21.7	8.4	8.7	5.7	2.6	2.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.7	8.4	8.7	5.7	2.6	2.6
Queue Length 50th (m)	1.9	0.0	16.9	0.5	0.0	0.0
Queue Length 95th (m)	5.9	5.7	90.6	6.2	11.5	43.9
Internal Link Dist (m)	124.7		241.9			167.3
Turn Bay Length (m)	30.0			15.0	30.0	
Base Capacity (vph)	429	271	1306	962	560	1662
Starvation Cap Reductn	0	0	0	0	0	4
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.04	0.27	0.42	0.04	0.31	0.49
Intersection Summany						

HCM Signalized Intersection Capacity Analysis 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

Movement
Lane Configurations Traffic Volume (vph) 14 61 465 30 146 689 Future Volume (vph) 14 61 465 30 146 689 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width 3.0 3.0 3.5 3.0 3.0 3.5 Total Lost time (s) 4.0 3.0 6.0 6.0 3.0 6.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Fipb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Fipb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Fit Protected 0.95 1.00 1.00 1.00 0.85 1.00 1.00 Satd. Flow (prot) 1560 1113 1807 1326 1274 1807 Fit Permitted 0.95 1.00 1.00 1.00 0.39 1.00 Satd. Flow (perm) 1560 1113 1807 1326 520 1807 Peak-hour factor, PHF 0.84 0.84 0.84 0.84 0.84 0.84 0.84 Adj. Flow (vph) 17 73 554 36 174 820 RTOR Reduction (vph) 17 12 554 31 174 820 Confl. Peds. (#/hr) Confl. Bikes (#/hr) 1 Heavy Vehicles (%) 8% 30% 4% 10% 32% 4% Bus Blockages (#/hr) 0 10 0 0 0 0 Turn Type Perm pm+ov NA Perm pm+pt NA Protected Phases 8 8 2 6 REffective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grop Cap (vph) 101 182 1217 893 495 1463
Traffic Volume (vph) 14 61 465 30 146 689 Future Volume (vph) 14 61 465 30 146 689 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width 3.0 3.0 3.5 3.0 3.0 3.5 Total Lost time (s) 4.0 3.0 6.0 6.0 3.0 6.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Fitp, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Fitp Protected 0.95 1.00
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width 3.0 3.0 3.5 3.0 3.0 3.5 Total Lost time (s) 4.0 3.0 6.0 6.0 3.0 6.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Fripb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Fipb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Fipb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Fith end to the first series of the first series o
Total Lost time (s)
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Frpb, ped/bikes 1.00 1.00 1.00 0.97 1.00
Fipb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Fit 1.00 0.85 1.00 0.85 1.00 1.00 1.00 Fit 1.00 0.85 1.00 1.00 1.00 1.00 1.00 Satd. Flow (prot) 1560 1113 1807 1326 1274 1807 Flt Permitted 0.95 1.00 1.00 1.00 0.39 1.00 Satd. Flow (prom) 1560 1113 1807 1326 520 1807 Peak-hour factor, PHF 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Frit 1.00 0.85 1.00 0.85 1.00 1.00 Fit Protected 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1560 1113 1807 1326 1274 1807 Fit Permitted 0.95 1.00 1.00 1.00 0.39 1.00 Satd. Flow (perm) 1560 1113 1807 1326 520 1807 Peak-hour factor, PHF 0.84 0.84 0.84 0.84 0.84 0.84 Adj. Flow (yph) 17 73 554 36 174 820 RTOR Reduction (yph) 0 61 0 5 0 0 Lane Group Flow (yph) 17 12 554 31 174 820 Confl. Peds. (#/hr) 8 8 8 Confl. Reavy Vehicles (%) 8% 30% 4% 10% 32% 4% Bus Blockages (#/hr) 0 10 0 0 0 0 Turn Type Perm pm+ov NA Perm pm+pt NA Protected Phases 1 2 1 6 Permitted Phases 8 8 2 6 6 Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Fit Protected 0.95 1.00 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1560 1113 1807 1326 1274 1807 Fit Permitted 0.95 1.00 1.00 1.00 0.39 1.00 Satd. Flow (perm) 1560 1113 1807 1326 520 1807 Peak-hour factor, PHF 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Satd. Flow (prot) 1560 1113 1807 1326 1274 1807 Fit Permitted 0.95 1.00 1.00 1.00 0.39 1.00 Satd. Flow (perm) 1560 1113 1807 1326 520 1807 Peak-hour factor, PHF 0.84 0.84 0.84 0.84 0.84 0.84 0.84 Adj. Flow (vph) 17 73 554 36 174 820 RTOR Reduction (vph) 0 61 0 5 0 0 Lane Group Flow (vph) 17 12 554 31 174 820 Confl. Peds. (#hr) 8 8 8 8 8 8 Confl. Bikes (#hr) 1 1 14
Fit Permitted 0.95 1.00 1.00 1.00 0.39 1.00 Satd. Flow (perm) 1560 1113 1807 1326 520 1807 Peak-hour factor, PHF 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Peak-hour factor, PHF 0.84 0.82
Peak-hour factor, PHF 0.84 0.82 0.82 0.82 0.82 0.82 0.84
Adj. Flow (vph) 17 73 554 36 174 820 RTOR Reduction (vph) 0 61 0 5 0 0 Lane Group Flow (vph) 17 12 554 31 174 820 Confl. Peds. (#hr) 8 8 8 Confl. Bikes (#hr) 1 1 1 Heavy Vehicles (%) 8% 30% 4% 10% 32% 4% Bus Blockages (#hr) 0 10 0 0 0 0 Turn Type Perm pm+ov NA Perm pm+pt NA Protected Phases 1 2 1 6 Permitted Phases 8 8 2 6 Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Gry Cap (vph) <
RTOR Reduction (vph) 0 61 0 5 0 0 Lane Group Flow (vph) 17 12 554 31 174 820 Confl. Peds. (#/hr) 8 8 8 8 Confl. Bikes (#/hr) 1 1 1 Heavy Vehicles (%) 8% 30% 4% 10% 32% 4% Bus Blockages (#/hr) 0 10 0 0 0 0 Turn Type Perm pm+ov NA Perm pm+pt NA Permitted Phases 1 2 1 6 Permitted Phases 8 2 6 Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0
Lane Group Flow (vph) 17 12 554 31 174 820 Confl. Peds. (#/hr) 8 8 8 Heavy Vehicles (%) 8% 30% 4% 10% 32% 4% Bus Blockages (#/hr) 0 10 0 0 0 0 Tum Type Perm pm+ov NA Perm pm+pt NA Protected Phases 1 2 1 6 Permitted Phases 8 8 2 6 Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Confl. Peds. (#/hr) Confl. Bikes (#/hr) Heavy Vehicles (%) Bus Blockages (#/hr) Tum Type Perm pm+ov NA Perm pm+pt NA Perm pm+pt NA Permitted Phases 8 8 8 2 6 Actuated Green, G (s) 4.2 11,1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495
Heavy Vehicles (%) 8% 30% 4% 10% 32% 4% Bus Blockages (#/hr) 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bus Blockages (#l/hr) 0 10 0 0 0 0 Turn Type Perm pm+ov NA Perm pm+pt NA Protected Phases 1 2 1 6 Permitted Phases 8 2 6 Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Tum Type Perm pm+ov NA Perm pm+pt NA Protected Phases 1 2 1 6 Permitted Phases 8 8 8 2 6 Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Protected Phases 1 2 1 6 Permitted Phases 8 8 8 2 6 Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Protected Phases 1 2 1 6 Permitted Phases 8 8 8 2 6 Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Actuated Green, G (s) 4.2 11.1 52.9 52.9 63.8 63.8 Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Effective Green, g (s) 5.2 13.1 53.9 53.9 64.8 64.8 Actuated g/C Ratio 0.07 0.16 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Actuated g/C Ratio 0.07 0.16 0.67 0.67 0.81 0.81 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 101 182 1217 893 495 1463
Vehicle Extension (s) 3.0
Lane Grp Cap (vph) 101 182 1217 893 495 1463
V/S RATIO PTOT U.U1 U.31 U.U3 CU.45
v/s Ratio Perm c0.01 0.00 0.02 0.25
v/c Ratio 0.17 0.07 0.46 0.03 0.35 0.56
Uniform Delay, d1 35.4 28.3 6.1 4.4 2.3 2.6
Progression Factor 1.00 1.00 1.00 0.54 0.41
Incremental Delay, d2 0.8 0.2 1.2 0.1 0.4 1.3
Delay (s) 36.1 28.4 7.4 4.4 1.6 2.4
Level of Service D C A A A A
Approach Delay (s) 29.9 7.2 2.3
Approach LOS C A A
Intersection Summary
HCM 2000 Control Delay 5.5 HCM 2000 Level of Service A
HCM 2000 Volume to Capacity ratio 0.56
Actuated Cycle Length (s) 80.0 Sum of lost time (s) 14.0
Intersection Capacity Utilization 62.1% ICU Level of Service B
Analysis Period (min) 15
c Critical Lane Group

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

	•	•	†	<i>></i>	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		f)			ર્ન
Traffic Volume (vph)	16	2	128	24	0	26
Future Volume (vph)	16	2	128	24	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.986		0.979			
Flt Protected	0.957					
Satd. Flow (prot)	1738	0	1803	0	0	1842
Flt Permitted	0.957					
Satd. Flow (perm)	1738	0	1803	0	0	1842
Link Speed (k/h)	50		50			50
Link Distance (m)	78.7		80.2			351.8
Travel Time (s)	5.7		5.8			25.3
Confl. Peds. (#/hr)	11	14		936	936	
Confl. Bikes (#/hr)		2		5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	2	139	26	0	28
Shared Lane Traffic (%)						
Lane Group Flow (vph)	19	0	165	0	0	28
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5		0.0			0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	14		14	24	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 27.1%			IC	U Level	of Service
Analysis Period (min) 15						

	€	•	†	1	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		î,			ર્ની
Traffic Volume (veh/h)	16	2	128	24	0	26
Future Volume (Veh/h)	16	2	128	24	0	26
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	17	2	139	26	0	28
Pedestrians	936		11			14
Lane Width (m)	3.5		3.5			3.5
Walking Speed (m/s)	1.2		1.2			1.2
Percent Blockage	76		1			1
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1127	1102			1101	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1127	1102			1101	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.1	0.2				
tF (s)	3.5	3.3			2.2	
p0 queue free %	69	97			100	
cM capacity (veh/h)	54	61			153	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	19	165	28			
Volume Left	17	0	0			
Volume Right	2	26	0			
cSH	55	1700	153			
Volume to Capacity	0.35	0.10	0.00			
Queue Length 95th (m)	9.5	0.0	0.0			
Control Delay (s)	102.0	0.0	0.0			
Lane LOS	F					
Approach Delay (s)	102.0	0.0	0.0			
Approach LOS	F					
Intersection Summary						
Average Delay			9.1			
Intersection Capacity Utiliz	zation		27.1%	IC	U Level o	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 9004: Jefferson Ave & Site B Driveway

Lanes, Volumes, Timings 9006: Atlantic Ave & Site B Driveway

09/30/2021

	•	•	1	Ť	¥	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	ĥ	
Traffic Volume (vph)	28	8	25	46	178	17
Future Volume (vph)	28	8	25	46	178	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.969				0.988	
Flt Protected	0.963			0.983		
Satd. Flow (prot)	1719	0	0	1811	1820	0
Flt Permitted	0.963			0.983		
Satd. Flow (perm)	1719	0	0	1811	1820	0
Link Speed (k/h)	50			50	50	
Link Distance (m)	78.7			22.4	217.5	
Travel Time (s)	5.7			1.6	15.7	
Confl. Peds. (#/hr)		818	234			234
Confl. Bikes (#/hr)		2				26
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	30	9	27	50	193	18
Shared Lane Traffic (%)						
Lane Group Flow (vph)	39	0	0	77	211	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	14	24			14
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						

Intersection Summary	
Area Type: Other	
Control Type: Unsignalized	
Intersection Capacity Utilization 40	.5% ICU Level of Service A
Analysis Period (min) 15	

HCM Unsignalized Intersection Capacity Analysis 9006: Atlantic Ave & Site B Driveway

	•	*	1	†	↓	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1>	
Traffic Volume (veh/h)	28	8	25	46	178	17
Future Volume (Veh/h)	28	8	25	46	178	17
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	30	9	27	50	193	18
Pedestrians	234			818		
Lane Width (m)	3.5			3.5		
Walking Speed (m/s)	1.2			1.2		
Percent Blockage	19			66		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				77		
pX, platoon unblocked				.,,		
vC, conflicting volume	540	1254	445			
vC1, stage 1 conf vol	010	1201	110			
vC2, stage 2 conf vol						
vCu, unblocked vol	540	1254	445			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.1	0.2	4.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	92	84	97			
cM capacity (veh/h)	395	57	904			
						_
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	39	77	211			
Volume Left	30	27	0			
Volume Right	9	0	18			
cSH	167	904	1700			
Volume to Capacity	0.23	0.03	0.12			
Queue Length 95th (m)	6.6	0.7	0.0			
Control Delay (s)	32.9	3.4	0.0			
Lane LOS	D	Α				
Approach Delay (s)	32.9	3.4	0.0			
Approach LOS	D					
Intersection Summary						
Average Delay			4.7			
Intersection Capacity Utili	zation		40.5%	IC	CU Level o	f Service
Analysis Period (min)			15			
ananyolo i orioa (iiiiii)			10			

	•	-	•	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		નુ	4		W	
Traffic Volume (vph)	57	63	191	48	11	1
Future Volume (vph)	57	63	191	48	11	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.973		0.990	
Flt Protected		0.977			0.956	
Satd. Flow (prot)	0	1800	1792	0	1743	0
Flt Permitted		0.977			0.956	
Satd. Flow (perm)	0	1800	1792	0	1743	0
Link Speed (k/h)		40	40		50	
Link Distance (m)		198.4	579.0		130.0	
Travel Time (s)		17.9	52.1		9.4	
Confl. Peds. (#/hr)	731			731		
Confl. Bikes (#/hr)				45		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	62	68	208	52	12	1
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	130	260	0	13	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)		3.5	3.5	_	3.5	
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		4.8	4.8		4.8	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24			14	24	14
Sign Control		Free	Free		Stop	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 35.0%			IC	CU Level	of Service
Analysis Period (min) 15						
,						

	۶	-	-	•	/	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1		Y	
Traffic Volume (veh/h)	57	63	191	48	11	1
Future Volume (Veh/h)	57	63	191	48	11	1
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	62	68	208	52	12	1
Pedestrians					731	
Lane Width (m)					3.5	
Walking Speed (m/s)					1.2	
Percent Blockage					59	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		110110	110.10			
Upstream signal (m)		198				
pX, platoon unblocked		100				
vC, conflicting volume	991				1157	965
vC1, stage 1 conf vol	001				1101	000
vC2, stage 2 conf vol						
vCu, unblocked vol	991				1157	965
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)	4.1				0.4	0.2
tF (s)	2.2				3.5	3.3
p0 queue free %	78				83	99
cM capacity (veh/h)	284				69	126
					09	120
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	130	260	13			
Volume Left	62	0	12			
Volume Right	0	52	1			
cSH	284	1700	72			
Volume to Capacity	0.22	0.15	0.18			
Queue Length 95th (m)	6.2	0.0	4.7			
Control Delay (s)	12.6	0.0	66.0			
Lane LOS	В		F			
Approach Delay (s)	12.6	0.0	66.0			
Approach LOS			F			
Intersection Summary						
Average Delay			6.2			
Intersection Capacity Utiliz	ation		35.0%	IC	U Level o	of Service
Analysis Period (min)			15			
analysis i sinsa (mm)			10			

HCM Unsignalized Intersection Capacity Analysis 9007: New Liberty St & Hanna Ave

	۶	-	←	•	>	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	î,		¥	
Traffic Volume (vph)	198	76	174	66	0	44
Future Volume (vph)	198	76	174	66	0	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.963		0.865	
Flt Protected		0.965				
Satd. Flow (prot)	0	1778	1675	0	1593	0
Flt Permitted		0.965				
Satd. Flow (perm)	0	1778	1675	0	1593	0
Link Speed (k/h)		40	40		50	
Link Distance (m)		121.2	87.6		80.2	
Travel Time (s)		10.9	7.9		5.8	
Confl. Peds. (#/hr)	516			516		
Confl. Bikes (#/hr)				3		10
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Bus Blockages (#/hr)	0	0	14	14	0	0
Adj. Flow (vph)	220	84	193	73	0	49
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	304	266	0	49	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)		0.0	0.0	,	3.5	J .
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		4.8	4.8		4.8	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.09	1.01	1.01	1.01
Turning Speed (k/h)	24			14	24	14
Sign Control		Stop	Stop		Stop	
Intersection Summary						
	Other					
Control Type: Unsignalized	Ulliel					
	ion 44 20/			10	III ovel	of Service
Intersection Capacity Utilizat	1011 44.2%			IC	o Level (or service .
Analysis Period (min) 15						

	۶	→	←	•	>	√
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	f)		¥	
Sign Control		Stop	Stop		Stop	
Traffic Volume (vph)	198	76	174	66	0	44
Future Volume (vph)	198	76	174	66	0	44
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	220	84	193	73	0	49
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total (vph)	304	266	49			
Volume Left (vph)	220	0	0			
Volume Right (vph)	0	73	49			
Hadj (s)	0.18	-0.13	-0.57			
Departure Headway (s)	4.5	4.2	4.6			
Degree Utilization, x	0.38	0.31	0.06			
Capacity (veh/h)	791	829	699			
Control Delay (s)	10.1	9.1	7.9			
Approach Delay (s)	10.1	9.1	7.9			
Approach LOS	В	Α	Α			
Intersection Summary						
Delay			9.5			
Level of Service			Α			
Intersection Capacity Utilizat	tion		44.2%	IC	U Level of	Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 9022: New Liberty St & Jefferson Ave

	•	-	←	•	-	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	1	1101	₩.	ODIN
Traffic Volume (vph)	40	37	122	39	T 83	118
Future Volume (vph)	40	37	122	39	83	118
	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl) Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00
	1.00			1.00		1.00
Ped Bike Factor		0.70	0.82		0.46	
Frt		0.075	0.968		0.921	
Flt Protected		0.975	4400		0.980	
Satd. Flow (prot)	0	1695	1462	0	1032	0
FIt Permitted		0.816			0.980	
Satd. Flow (perm)	0	994	1462	0	769	0
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)			37			
Link Speed (k/h)		40	40		50	
Link Distance (m)		87.6	198.4		54.1	
Travel Time (s)		7.9	17.9		3.9	
Confl. Peds. (#/hr)	1229		3	1229	790	853
Confl. Bikes (#/hr)	0			10		3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Bus Blockages (#/hr)	0.90	14	0.90	0.90	0.90	0.90
	44	41	136	43	92	131
Adj. Flow (vph)	44	41	130	43	92	137
Shared Lane Traffic (%)	_	0.5	470	_	000	_
Lane Group Flow (vph)	0	85	179	0	223	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)		0.0	0.0		3.5	
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		4.8	4.8		4.8	
Two way Left Turn Lane						
Headway Factor	1.01	1.09	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	1.00		14	24	14
Number of Detectors	1	2	2		1	
Detector Template	Left	Thru	Thru		Left	
Leading Detector (m)	6.1	30.5	30.5		6.1	
Trailing Detector (m)	0.0	0.0	0.0		0.0	
Detector 1 Position(m)	0.0	0.0	0.0		0.0	
Detector 1 Size(m)	6.1	1.8	1.8		6.1	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	
Detector 2 Position(m)		28.7	28.7			
Detector 2 Size(m)		1.8	1.8			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel		J X	J LX			
Detector 2 Extend (s)		0.0	0.0			
Turn Type	Perm	NA	NA		Perm	
	I CIIII	2	6		I CIIII	
Protected Phases		- 2	б			

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements	
HDR Corporation	

	٠	-	←	•	>	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Permitted Phases	2				4	
Detector Phase	2	2	6		4	
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0		7.0	
Minimum Split (s)	24.0	24.0	24.0		24.0	
Total Split (s)	24.0	24.0	24.0		26.0	
Total Split (%)	48.0%	48.0%	48.0%		52.0%	
Maximum Green (s)	18.0	18.0	18.0		20.0	
Yellow Time (s)	4.0	4.0	4.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)		-1.0	-1.0		-1.0	
Total Lost Time (s)		5.0	5.0		5.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0		3.0	
Recall Mode	C-Max	C-Max	C-Max		None	
Walk Time (s)	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	11.0	11.0	11.0		11.0	
Pedestrian Calls (#/hr)	100	100	100		100	
Act Effct Green (s)		21.7	21.7		18.3	
Actuated g/C Ratio		0.43	0.43		0.37	
v/c Ratio		0.20	0.27		0.79	
Control Delay		11.9	9.8		36.4	
Queue Delay		0.0	0.0		0.0	
Total Delay		11.9	9.8		36.4	
LOS		В	A		D	
Approach Delay		11.9	9.8		36.4	
Approach LOS		В	Α.		D	
••			• • •			
Intersection Summary						
Area Type:	Other					
Cycle Length: 50						
Actuated Cycle Length:						
Offset: 0 (0%), Reference	ed to phase 2:	EBTL an	d 6:WBT,	Start of G	ireen	
Natural Cycle: 55						
Control Type: Actuated-						
Maximum v/c Ratio: 0.79						
Intersection Signal Delay					tersection	
Intersection Capacity Ut				IC	CU Level o	of Service A
Analysis Period (min) 15	5					
Calita and Dhases: 00	100 Mauri 2	L. C. O A.	lantin A··-			
Splits and Phases: 90	23: New Liber	ty St & At	iantic Ave			
Ø2 (R)					Ø4	
24 s					26 s	
—						
Ø6 (R)					l	
24 s						

9023: New Liberty St & Atlantic Ave

09/30/2021

	_	•	· /
	_		-
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	85	179	223
v/c Ratio	0.20	0.27	0.79
Control Delay	11.9	9.8	36.4
Queue Delay	0.0	0.0	0.0
Total Delay	11.9	9.8	36.4
Queue Length 50th (m)	4.9	8.3	15.3
Queue Length 95th (m)	12.7	19.3	#44.1
Internal Link Dist (m)	63.6	174.4	30.1
Turn Bay Length (m)			
Base Capacity (vph)	430	654	322
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.20	0.27	0.69

Intersection Summary # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 9023: New Liberty St & Atlantic Ave

	۶	→	←	•	>	4			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		4	1>		¥				
Traffic Volume (vph)	40	37	122	39	83	118			
Future Volume (vph)	40	37	122	39	83	118			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		5.0	5.0		5.0				
Lane Util. Factor		1.00	1.00		1.00				
Frpb, ped/bikes		1.00	0.82		0.62				
Flpb, ped/bikes		0.70	1.00		0.74				
Frt		1.00	0.97		0.92				
Flt Protected		0.97	1.00		0.98				
Satd. Flow (prot)		1188	1462		768				
Flt Permitted		0.82	1.00		0.98				
Satd. Flow (perm)		994	1462		768				
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
	0.90	0.90 41	136	43	92				
Adj. Flow (vph)	44	41	136	43	92	131			
RTOR Reduction (vph)	0	85	158	0	223	0			
Lane Group Flow (vph)	-	85	158						
Confl. Peds. (#/hr)	1229			1229	790	853			
Confl. Bikes (#/hr)	•		•	10	•	3			
Bus Blockages (#/hr)	0	14	0	0	0	0			
Turn Type	Perm	NA	NA		Perm				
Protected Phases		2	6						
Permitted Phases	2				4				
Actuated Green, G (s)		20.7	20.7		17.3				
Effective Green, g (s)		21.7	21.7		18.3				
Actuated g/C Ratio		0.43	0.43		0.37				
Clearance Time (s)		6.0	6.0		6.0				
Vehicle Extension (s)		3.0	3.0		3.0				
Lane Grp Cap (vph)		431	634		281				
v/s Ratio Prot			c0.11						
v/s Ratio Perm		0.09			c0.29				
v/c Ratio		0.20	0.25		0.79				
Uniform Delay, d1		8.8	9.0		14.2				
Progression Factor		1.00	1.00		1.00				
Incremental Delay, d2		1.0	0.9		14.2				
Delay (s)		9.8	9.9		28.4				
Level of Service		A	Α		С				
Approach Delay (s)		9.8	9.9		28.4				
Approach LOS		Α	А		С				
Intersection Summary									
HCM 2000 Control Delay			18.4	Н	CM 2000	Level of Service	2	В	
HCM 2000 Volume to Capaci	tv ratio		0.51				-		
Actuated Cycle Length (s)	i, idio		50.0	Sı	um of lost	time (s)		11.0	
Intersection Capacity Utilization	on		52.0%			of Service		Α	
Analysis Period (min)			15	10	C LOTOI C	5311100		,,	
c Critical Lane Group			13						
o ondoar Laire Group									

Lanes, Volumes, Timings 9024: Dufferin St & New Liberty St

09/30/2021

	•	•	†	/	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	1		ሻ	†
Traffic Volume (vph)	185	75	392	150	47	669
Future Volume (vph)	185	75	392	150	47	669
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0	0.0	.003	0.0	0.0	.000
Storage Lanes	10.0	1		0.0	1	
Taper Length (m)	7.5			- 0	7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.60	0.99	1.00	1.00	1.00
Frt		0.850	0.963		1.00	
Flt Protected	0.950	0.000	5.000		0.950	
Satd. Flow (prot)	1750	1566	1763	0	1750	1842
Flt Permitted	0.950	1000	1700	U	0.375	1072
Satd. Flow (perm)	1750	937	1763	0	690	1842
Right Turn on Red	1730	Yes	1703	Yes	090	1042
Satd. Flow (RTOR)		83	48	168		
	40	03	30			30
Link Speed (k/h)						
Link Distance (m)	107.6		191.3			74.7
Travel Time (s)	9.7	470	23.0			9.0
Confl. Peds. (#/hr)		170		1	1	
Confl. Bikes (#/hr)		12	0.05	1	0.05	0.05
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	206	83	436	167	52	743
Shared Lane Traffic (%)	00-	0.5	205			
Lane Group Flow (vph)	206	83	603	0	52	743
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5		3.5			3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	14		14	24	
Number of Detectors	1	1	2		1	2
Detector Template	Left	Right	Thru		Left	Thru
Leading Detector (m)	6.1	6.1	30.5		6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0		0.0	0.0
Detector 1 Size(m)	6.1	6.1	1.8		6.1	1.8
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel	OI. LX	JI. LX	JI-LX		OI. LX	JI. LA
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	0.0
Detector 2 Position(m)	0.0	0.0	28.7		0.0	28.7
			1.8			1.8
Detector 2 Size(m)						
Detector 2 Type			CI+Ex			CI+Ex
Detector 2 Channel			0.5			
Detector 2 Extend (s)			0.0			0.0

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 65

Lanes, Volumes, Timings 9024: Dufferin St & New Liberty St

09/30/2021

	•	•	†	/	-	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Turn Type	Perm	Perm	NA		Perm	NA	
Protected Phases			2			6	
Permitted Phases	8	8			6		
Detector Phase	8	8	2		6	6	
Switch Phase							
Minimum Initial (s)	7.0	7.0	7.0		7.0	7.0	
Minimum Split (s)	24.0	24.0	24.0		24.0	24.0	
Total Split (s)	24.0	24.0	56.0		56.0	56.0	
Total Split (%)	30.0%	30.0%	70.0%		70.0%	70.0%	
Maximum Green (s)	18.0	18.0	50.0		50.0	50.0	
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	5.0	5.0	5.0		5.0	5.0	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0		0	0	
Act Effct Green (s)	15.2	15.2	54.8		54.8	54.8	
Actuated g/C Ratio	0.19	0.19	0.68		0.68	0.68	
v/c Ratio	0.19	0.19	0.66		0.00	0.66	
Control Delay	37.8	10.5	12.2		3.4	5.7	
	0.0	0.0	0.0		0.0	0.0	
Queue Delay	37.8	10.5	12.2		3.4	5.7	
Total Delay LOS	37.8 D	10.5 B	12.2 B		3.4 A	5.7 A	
	29.9	В	12.2		А	5.5	
Approach Delay							
Approach LOS	С		В			Α	
Intersection Summary					_		
Area Type:	Other						
Cycle Length: 80							
Actuated Cycle Length: 80)						
Offset: 0 (0%), Reference		NBT and	6:SBTL. S	Start of G	reen		
Natural Cycle: 60			,				
Control Type: Actuated-Co	oordinated						
Maximum v/c Ratio: 0.62	ooramatoa						
Intersection Signal Delay:	12 1			In	tersectio	n LOS: B	
Intersection Capacity Utiliz						of Service	B
Analysis Period (min) 15	LUUUII UL.4 /0			IC	C LOVEI	O1 O61 VICE	_
Analysis i chica (mill) 13							
Splits and Phases: 902	4: Dufferin St	& New I	iherty St				
Spiils and Friases. 302	4. Dullelli Si	A New L	liberty St				
Tø2 (R)							
56 s							
\							
▼ Ø6 (R)							
56 s							

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Scenario 1 Total Future AM 11:59 pm 05/05/2014 No Improvements

HDR Corporation

	•	•	†	-	Ţ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	206	83	603	52	743
v/c Ratio	0.62	0.34	0.49	0.11	0.59
Control Delay	37.8	10.5	12.2	3.4	5.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	37.8	10.5	12.2	3.4	5.7
Queue Length 50th (m)	28.8	0.0	34.1	1.2	34.8
Queue Length 95th (m)	46.8	10.6	125.8	m2.0	m54.0
Internal Link Dist (m)	83.6		167.3		50.7
Turn Bay Length (m)	15.0				
Base Capacity (vph)	415	285	1223	473	1262
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.50	0.29	0.49	0.11	0.59
Intersection Summary					
m Volume for 95th percer	ntile queue is	metered	by upstr	eam sign	ıal.

	•	•	†	/	\	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻ	7	f		ሻ	†			
Traffic Volume (vph)	185	75	392	150	47	669			
Future Volume (vph)	185	75	392	150	47	669			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	5.0	5.0	5.0		5.0	5.0			
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00			
Frpb, ped/bikes	1.00	0.60	0.99		1.00	1.00			
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00			
Frt	1.00	0.85	0.96		1.00	1.00			
Flt Protected	0.95	1.00	1.00		0.95	1.00			
Satd. Flow (prot)	1750	932	1762		1749	1842			
FIt Permitted	0.95	1.00	1.00		0.38	1.00			
Satd. Flow (perm)	1750	932	1762		691	1842			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
Adj. Flow (vph)	206	83	436	167	52	743			
RTOR Reduction (vph)	0	67	15	0	0	0			
Lane Group Flow (vph)	206	16	588	0	52	743			
Confl. Peds. (#/hr)	200	170	000	1	1	0			
Confl. Bikes (#/hr)		12		1					
Turn Type	Perm	Perm	NA		Perm	NA			
Protected Phases	1 01111	1 01111	2		1 01111	6			
Permitted Phases	8	8			6				
Actuated Green, G (s)	14.2	14.2	53.8		53.8	53.8			
Effective Green, g (s)	15.2	15.2	54.8		54.8	54.8			
Actuated g/C Ratio	0.19	0.19	0.68		0.68	0.68			
Clearance Time (s)	6.0	6.0	6.0		6.0	6.0			
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	332	177	1206		473	1261			
v/s Ratio Prot	002	111	0.33		7/0	c0.40			
v/s Ratio Perm	c0.12	0.02	0.00		0.08	60.40			
v/c Ratio	0.62	0.02	0.49		0.00	0.59			
Uniform Delay, d1	29.8	26.7	6.0		4.3	6.7			
Progression Factor	1.00	1.00	1.74		0.62	0.72			
Incremental Delay, d2	3.6	0.2	1.74		0.02	0.72			
Delay (s)	33.3	26.9	11.7		2.7	4.9			
Level of Service	33.3 C	20.3 C	В		Α.	4.3 A			
Approach Delay (s)	31.5	- 3	11.7		- 11	4.8			
Approach LOS	01.0 C		В			Α.			
••	- 0					,,			
Intersection Summary			44.0		1014 0000	1 1 (0 :			
HCM 2000 Control Delay			11.8	Н	ICM 2000	Level of Service	9	В	
HCM 2000 Volume to Capa	icity ratio		0.60	_				44.0	
Actuated Cycle Length (s)			80.0		um of los			11.0	
Intersection Capacity Utiliza	ation		62.4%	IC	CU Level	of Service		В	
Analysis Period (min)			15						

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 9024: Dufferin St & New Liberty St

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	ሻ	*	†	
Traffic Volume (vph)	0	95	0	571	372	135
Future Volume (vph)	0	95	0	571	372	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0	0.0	15.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850			0.964	
Flt Protected						
Satd. Flow (prot)	1842	1566	1842	1842	1776	0
Flt Permitted						
Satd. Flow (perm)	1842	1566	1842	1842	1776	0
Link Speed (k/h)	40			40	40	-
Link Distance (m)	579.0			241.4	424.1	
Travel Time (s)	52.1			21.7	38.2	
Confl. Peds. (#/hr)			9			9
Confl. Bikes (#/hr)		4				76
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	106	0	634	413	150
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	106	0	634	563	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5		2011	3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane	1.0			1.5	1.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	1.01	24	1.01	1.01	1.01
Sign Control	Stop	17	24	Free	Free	17
-	Otop			1100	1100	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 40.6%			IC	CU Level of	of Service A
Analysis Period (min) 15						

	۶	•	4	†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	ሻ	†	*		_	
Traffic Volume (veh/h)	0	95	0	571	372	135		
Future Volume (Veh/h)	0	95	0	571	372	135		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	0	106	0	634	413	150		
Pedestrians	9							
Lane Width (m)	3.5							
Walking Speed (m/s)	1.2							
Percent Blockage	1							
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)				241				
pX, platoon unblocked	0.83							
vC, conflicting volume	1131	497	572					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1057	497	572					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	100	81	100					
cM capacity (veh/h)	206	569	993					
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	SB 1			
Volume Total	0	106	0	634	563			
Volume Left	0	0	0	0	0			
Volume Right	0	106	0	0	150			
cSH	1700	569	1700	1700	1700			
Volume to Capacity	0.00	0.19	0.00	0.37	0.33			
Queue Length 95th (m)	0.0	5.2	0.0	0.0	0.0			
Control Delay (s)	0.0	12.8	0.0	0.0	0.0			
Lane LOS	Α	В	0.0	0.0	0.0			
Approach Delay (s)	12.8		0.0		0.0			
Approach LOS	В		0.0		0.0			
Intersection Summary								
Average Delay			1.0					
Intersection Capacity Utiliza	tion		40.6%	ıc	U Level of	Service		
Analysis Period (min)	ILIUII		15	ic	O LEVEI U	SCIVICE		
Analysis Penou (IIIIII)			10					

HCM Unsignalized Intersection Capacity Analysis 9025: Strachan Ave & New Liberty St

HCM Unsignalized Intersection Capacity Analysis 9029: Atlantic Ave

09/30/2021

	•	•	†	<i>></i>	\	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		4			4
Traffic Volume (vph)	14	4	47	24	6	40
Future Volume (vph)	14	4	47	24	6	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.973		0.954			
Flt Protected	0.962					0.993
Satd. Flow (prot)	1724	0	1757	0	0	1829
Flt Permitted	0.962					0.993
Satd. Flow (perm)	1724	0	1757	0	0	1829
Link Speed (k/h)	50		50			50
Link Distance (m)	47.7		54.1			22.4
Travel Time (s)	3.4		3.9			1.6
Confl. Peds. (#/hr)	54	1		360	360	
Confl. Bikes (#/hr)		2		6		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	16	4	52	27	7	44
Shared Lane Traffic (%)						
Lane Group Flow (vph)	20	0	79	0	0	51
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5		0.0	-		0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	14		14	24	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 23.7%			IC	U Level	of Service
Analysis Period (min) 15						

	•	•	†	~	/	
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1>			ની
Traffic Volume (veh/h)	14	4	47	24	6	40
Future Volume (Veh/h)	14	4	47	24	6	40
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	16	4	52	27	7	44
Pedestrians	360		54			1
Lane Width (m)	3.5		3.5			3.5
Walking Speed (m/s)	1.2		1.2			1.2
Percent Blockage	29		4			0
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)			54			
pX, platoon unblocked						
vC, conflicting volume	538	426			439	
vC1, stage 1 conf vol	000	.20			100	
vC2, stage 2 conf vol						
vCu, unblocked vol	538	426			439	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)		0.2				
tF (s)	3.5	3.3			2.2	
p0 queue free %	95	99			99	
cM capacity (veh/h)	339	444			794	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	20	79	51			
Volume Total Volume Left	16	0	7			
Volume Right	4	27	0			
cSH	356	1700	794			
	0.06	0.05	0.01			
Volume to Capacity	1.4					
Queue Length 95th (m)		0.0	0.2			
Control Delay (s)	15.7	0.0	1.4			
Lane LOS	C	0.0	A			
Approach Delay (s)	15.7	0.0	1.4			
Approach LOS	С					
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Utilizat	tion		23.7%	IC	U Level o	of Service
Analysis Period (min)			15			
,						

Lanes, Volumes, Timings

97: Yukon Place & British Colombia Rd

09/30/2021

	ၨ	-	•	•	←	•	4	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1		7	†	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Storage Length (m)	30.0		0.0	20.0		20.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	1		1	0		0	0		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor				1.00				0.99			0.97	
Frt						0.850					0.865	
Flt Protected	0.950			0.950				0.957				
Satd. Flow (prot)	1685	1824	0	1685	1756	1507	0	1798	0	0	1574	0
Flt Permitted	0.555			0.494								
Satd. Flow (perm)	984	1824	0	874	1756	1507	0	1860	0	0	1574	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						45					514	
Link Speed (k/h)		30			30			30			30	
Link Distance (m)		164.9			265.9			92.0			121.3	
Travel Time (s)		19.8			31.9			11.0			14.6	
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	29	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.09	1.01	1.09	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5	6.1	6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8	6.1	6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report

Page 1

Lanes, Volumes, Timings

97: Yukon Place & British Colombia Rd

09/30/2021

	•	→	•	•	•	•	4	†	<i>></i>	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	33.0	33.0		33.0	33.0	33.0	7.0	7.0		7.0	7.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	24.0	24.0		24.0	24.0	
Total Split (s)	47.0	47.0		47.0	47.0	47.0	25.0	25.0		25.0	25.0	
Total Split (%)	65.3%	65.3%		65.3%	65.3%	65.3%	34.7%	34.7%		34.7%	34.7%	
Maximum Green (s)	41.0	41.0		41.0	41.0	41.0	19.0	19.0		19.0	19.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0	-1.0		-1.0			-1.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0		9.0	9.0	9.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0		0	0	
Act Effct Green (s)	58.5	58.5		58.5	58.5	58.5		8.0			8.0	
Actuated g/C Ratio	0.90	0.90		0.90	0.90	0.90		0.12			0.12	
v/c Ratio	0.00	0.29		0.00	0.22	0.00		0.04			0.05	
Control Delay	2.0	2.3		2.0	2.1	0.0		27.0			0.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0			0.0	
Total Delay	2.0	2.3		2.0	2.1	0.0		27.0			0.1	
LOS	Α	Α		Α	Α	Α		С			Α	
Approach Delay		2.3			2.1			27.0			0.1	_
Approach LOS		Α			Α			С			Α	

Intersection Summary Area Type: Cycle Length: 72 Other Actuated Cycle Length: 65.2 Natural Cycle: 65 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.29 Intersection Signal Delay: 2.4
Intersection Capacity Utilization 73.3%
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 97: Yukon Place & British Colombia Rd

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report

Page 3

HCM Signalized Intersection Capacity Analysis 97: Yukon Place & British Colombia Rd

09/30/2021

	٠	→	•	•	←	•	1	†	1	-	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		ሻ	↑	7		4			4	
Traffic Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Future Volume (vph)	1	423	0	1	308	1	7	1	0	0	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0		5.0			5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		1.00			0.97	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00		0.99			1.00	
Frt	1.00	1.00		1.00	1.00	0.85		1.00			0.86	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.96			1.00	
Satd. Flow (prot)	1685	1824		1681	1756	1507		1781			1574	
Flt Permitted	0.56	1.00		0.49	1.00	1.00		1.00			1.00	
Satd. Flow (perm)	985	1824		873	1756	1507		1860			1574	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1	470	0	1	342	1	8	1	0	0	0	29
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	27	0
Lane Group Flow (vph)	1	470	0	1	342	1	0	9	0	0	2	0
Confl. Peds. (#/hr)			2	2			6					6
Confl. Bikes (#/hr)									1			
Heavy Vehicles (%)	0%	3%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA			NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	54.3	54.3		54.3	54.3	54.3		2.6			2.6	
Effective Green, g (s)	55.3	55.3		55.3	55.3	55.3		3.6			3.6	
Actuated g/C Ratio	0.80	0.80		0.80	0.80	0.80		0.05			0.05	
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	790	1463		700	1409	1209		97			82	
v/s Ratio Prot	, , ,	c0.26			0.19	1200		0.			0.00	
v/s Ratio Perm	0.00			0.00		0.00		c0.00				
v/c Ratio	0.00	0.32		0.00	0.24	0.00		0.09			0.02	
Uniform Delay, d1	1.3	1.8		1.3	1.7	1.3		31.1			31.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	0.0	0.6		0.0	0.4	0.0		0.4			0.1	
Delay (s)	1.3	2.4		1.3	2.1	1.3		31.5			31.1	
Level of Service	Α	Α.		Α.	Α.	Α.		C			C	
Approach Delay (s)	,,	2.4		/ (2.1	71		31.5			31.1	
Approach LOS		Α.Τ			Α.			C C			C	
Intersection Summary		- '			- ' '							
HCM 2000 Control Delay			3.5	Н	CM 2000	Level of S	Service		A			
HCM 2000 Control Delay HCM 2000 Volume to Capa	city ratio		0.31	П	OW 2000	-0401 01 C	DOI VICE					
Actuated Cycle Length (s)	orly ratio		68.9	Q ₁	um of lost	time (s)			10.0			
Intersection Capacity Utiliza	tion		73.3%			of Service			10.0 D			
Analysis Period (min)	iuOII		15.5 %	IC	O LEVEL	, oei vice			U			
c Critical Lane Group			10									
o ontion cario oroup												

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements

Lanes, Volumes, Timings 222: Lakeshore Blvd & Strachan Ave

09/30/2021

	۶	→	•	•	←	•	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተው		7	ተተተ			4			ર્ન	7
Traffic Volume (vph)	523	1621	3	12	2476	0	0	16	0	538	49	404
Future Volume (vph)	523	1621	3	12	2476	0	0	16	0	538	49	404
Ideal Flow (vphpl)	2150	1900	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Storage Length (m)	60.0		0.0	60.0		50.0	0.0		0.0	140.0		50.0
Storage Lanes	1		0	1		0	0		0	1		1
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	0.91	0.91	1.00	*0.95	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor		1.00		1.00								0.92
Frt												0.850
Flt Protected	0.950			0.950						0.950	0.960	
Satd. Flow (prot)	1816	4794	0	1685	5883	0	0	1879	0	1585	1699	1507
Flt Permitted	0.072			0.096						0.746	0.750	
Satd. Flow (perm)	138	4794	0	170	5883	0	0	1879	0	1244	1328	1382
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)												230
Link Speed (k/h)		60			60			40			40	
Link Distance (m)		310.3			196.6			116.5			205.6	
Travel Time (s)		18.6			11.8			10.5			18.5	
Confl. Peds. (#/hr)	5		8	8		5	46					46
Confl. Bikes (#/hr)									16			38
Peak Hour Factor	0.90	0.95	0.95	0.90	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	5%	7%	0%	0%	3%	0%	0%	0%	0%	1%	0%	0%
Adj. Flow (vph)	581	1706	3	13	2606	0	0	17	0	566	52	425
Shared Lane Traffic (%)										46%		
Lane Group Flow (vph)	581	1709	0	13	2606	0	0	17	0	306	312	425
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.0			3.0			3.0			3.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	0.93	1.01	1.01	1.09	0.86	1.09	1.01	1.01	1.01	1.09	1.01	1.09
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 5

HDR Corporation

Lanes, Volumes, Timings 222: Lakeshore Blvd & Strachan Ave

09/30/2021

Page 6

	•	-	\rightarrow	•	-	•	1	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	pm+ov
Protected Phases	5	2		1	6			3			4	5
Permitted Phases	2			6			3			4		4
Detector Phase	5	2		1	6		3	3		4	4	5
Switch Phase												
Minimum Initial (s)	6.0	29.0		6.0	30.0		12.0	12.0		10.0	10.0	6.0
Minimum Split (s)	12.0	35.0		12.0	36.0		21.0	21.0		45.0	45.0	12.0
Total Split (s)	27.0	66.0		12.0	51.0		21.0	21.0		45.0	45.0	27.0
Total Split (%)	18.8%	45.8%		8.3%	35.4%		14.6%	14.6%		31.3%	31.3%	18.8%
Maximum Green (s)	21.0	60.0		6.0	45.0		12.0	12.0		37.0	37.0	21.0
Yellow Time (s)	3.0	4.0		3.0	4.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	3.0	2.0		3.0	2.0		6.0	6.0		5.0	5.0	3.0
Lost Time Adjust (s)	-3.0	-1.0		-1.0	-3.0			-1.0		-1.0	-1.0	-1.0
Total Lost Time (s)	3.0	5.0		5.0	3.0			8.0		7.0	7.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	Lead
Lead-Lag Optimize?		3			3					3	3	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Max		None	Max		None	None		None	None	None
Walk Time (s)	110.10	7.0		110110	7.0		110.10	110.10		7.0	7.0	110110
Flash Dont Walk (s)		22.0			22.0					30.0	30.0	
Pedestrian Calls (#/hr)		3			2					0.0	0	
Act Effct Green (s)	75.6	69.3		53.5	48.4			13.1		36.2	36.2	60.4
Actuated g/C Ratio	0.58	0.54		0.41	0.37			0.10		0.28	0.28	0.47
v/c Ratio	1.47	0.67		0.09	1.19			0.09		0.88	0.84	0.54
Control Delay	258.8	26.8		19.0	124.8			59.0		71.8	65.7	12.9
Queue Delay	0.0	0.0		0.0	0.2			0.0		0.0	0.0	0.0
Total Delay	258.8	26.8		19.0	125.1			59.0		71.8	65.7	12.9
LOS	F	C		В	F			E		7 1.0 E	E	12.3 B
Approach Delay		85.6			124.5			59.0			46.0	
Approach LOS		F			F			E			-10.0 D	
••												
Intersection Summary	Other											
Area Type:	Other											
Cycle Length: 144	0.5											
Actuated Cycle Length: 12	9.5											
Natural Cycle: 145												
Control Type: Semi Act-Ur	ncoora											
Maximum v/c Ratio: 1.47												
Intersection Signal Delay:		.,			tersection							
Intersection Capacity Utiliz	ation 109.59	%		IC	CU Level o	of Service	H					
Analysis Period (min) 15												
* User Entered Value												
Splits and Phases: 222:	Lakeshore	Blvd & Stra	achan A	/e								
√ø1 - ø2						↑ ø3		₽ ø	4			
12 s 66 s						21 s		45 s				

	•	-	1	•	†	-	. ↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	581	1709	13	2606	17	306	312	425	
v/c Ratio	1.47	0.67	0.09	1.19	0.09	0.88	0.84	0.54	
Control Delay	258.8	26.8	19.0	124.8	59.0	71.8	65.7	12.9	
Queue Delay	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
Total Delay	258.8	26.8	19.0	125.1	59.0	71.8	65.7	12.9	
Queue Length 50th (m)	~175.2	90.3	1.2	~257.1	3.8	71.2	71.6	24.6	
Queue Length 95th (m)	#298.7	178.4	5.5	#361.5	12.5	#149.8	#146.7	66.7	
Internal Link Dist (m)		286.3		172.6	92.5		181.6		
Turn Bay Length (m)	60.0		60.0			140.0		50.0	
Base Capacity (vph)	394	2565	152	2199	190	368	393	789	
Starvation Cap Reductn	0	0	0	186	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.47	0.67	0.09	1.29	0.09	0.83	0.79	0.54	

Intersection Summary

	۶	→	•	•	—	•	•	†	~	/	ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ		7	ተተተ			4		7	ર્ન	7
Traffic Volume (vph)	523	1621	3	12	2476	0	0	16	0	538	49	404
Future Volume (vph)	523	1621	3	12	2476	0	0	16	0	538	49	404
Ideal Flow (vphpl)	2150	1900	1900	1900	2150	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.0	3.5	3.5	3.5	3.0	3.5	3.0
Total Lost time (s)	3.0	5.0		5.0	3.0			8.0		7.0	7.0	5.0
Lane Util. Factor	1.00	0.91		1.00	*0.95			1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	0.95
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00			1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	0.96	1.00
Satd. Flow (prot)	1816	4793		1685	5883			1879		1585	1699	1431
Flt Permitted	0.07	1.00		0.10	1.00			1.00		0.75	0.75	1.00
Satd. Flow (perm)	138	4793		170	5883			1879		1245	1327	1431
Peak-hour factor, PHF	0.90	0.95	0.95	0.90	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	581	1706	3	13	2606	0	0	17	0	566	52	425
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	133
Lane Group Flow (vph)	581	1709	0	13	2606	0	0	17	0	306	312	292
Confl. Peds. (#/hr)	5		8	8		5	46					46
Confl. Bikes (#/hr)									16			38
Heavy Vehicles (%)	5%	7%	0%	0%	3%	0%	0%	0%	0%	1%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	pm+ov
Protected Phases	5	2		1	6			3			4	5
Permitted Phases	2			6			3			4		4
Actuated Green, G (s)	76.5	68.3		51.5	49.3			4.3		35.2	35.2	56.4
Effective Green, g (s)	79.5	69.3		53.5	52.3			5.3		36.2	36.2	58.4
Actuated g/C Ratio	0.57	0.50		0.38	0.38			0.04		0.26	0.26	0.42
Clearance Time (s)	6.0	6.0		6.0	6.0			9.0		8.0	8.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	371	2389		100	2213			71		324	345	601
v/s Ratio Prot	c0.27	0.36		0.00	0.44			c0.01				0.08
v/s Ratio Perm	c0.62			0.05						c0.25	0.24	0.13
v/c Ratio	1.57	0.72		0.13	1.18			0.24		0.94	0.90	0.49
Uniform Delay, d1	46.5	27.2		27.2	43.4			64.9		50.4	49.7	29.4
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00
Incremental Delay, d2	267.5	1.9		0.6	85.0			1.7		35.4	25.9	0.6
Delay (s)	314.0	29.0		27.8	128.3			66.6		85.8	75.6	30.0
Level of Service	F	С		С	F			Е		F	Е	С
Approach Delay (s)		101.3			127.8			66.6			60.0	
Approach LOS		F			F			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			105.6	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		1.40									
Actuated Cycle Length (s)			139.0	S	um of los	t time (s)			25.0			
Intersection Capacity Utilizati	ion		109.5%	IC	CU Level	of Service			Н			_
Analysis Period (min)			15									
 c Critical Lane Group 												

HCM 2000 Control Delay	105.6	HCM 2000 Level of Service	F	
HCM 2000 Volume to Capacity ratio	1.40			
Actuated Cycle Length (s)	139.0	Sum of lost time (s)	25.0	
Intersection Capacity Utilization	109.5%	ICU Level of Service	Н	
Analysis Period (min)	15			
c Critical Lane Group				

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 538: Strachan Ave & King St

09/30/2021

	۶	-	\rightarrow	•	←	•	4	†	1	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4î>			414		ሻ	(î		ሻ	f)	
Traffic Volume (vph)	0	472	100	4	845	68	275	358	169	27	236	27
Future Volume (vph)	0	472	100	4	845	68	275	358	169	27	236	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	25.0		0.0	25.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.93			0.99		0.88	0.96		0.97	0.98	
Frt		0.974			0.989			0.952			0.984	
Fit Protected							0.950			0.950		
Satd. Flow (prot)	0	2566	0	0	2866	0	1486	1536	0	1516	1614	0
Flt Permitted		2000			0.953		0.541	.000		0.276		ŭ
Satd. Flow (perm)	0	2566	0	0	2729	0	743	1536	0	427	1614	0
Right Turn on Red		2000	Yes		2120	Yes	7 10	1000	Yes	12/	1014	Yes
Satd. Flow (RTOR)		38	100		13	100		40	100		10	100
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		255.2			358.6			424.1			379.9	
Travel Time (s)		18.4			25.8			38.2			34.2	
Confl. Peds. (#/hr)	83	10.4	194	194	25.0	83	170	30.2	89	89	J4.Z	170
Confl. Bikes (#/hr)	00		9	134		7	170		26	03		6
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	0.34	6%	17%	100%	4%	0.94	2%	1%	0.34	0.94	1%	0.94
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0 /0	0 /8	0	0 /8
Adj. Flow (vph)	0	502	106	4	899	72	293	381	180	29	251	29
Shared Lane Traffic (%)	U	302	100	4	099	12	293	301	100	23	201	29
Lane Group Flow (vph)	0	608	0	0	975	0	293	561	0	29	280	0
Enter Blocked Intersection	No	No	No	No	No.	No	No.	No	No	No	No.	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Leit	0.0	Rigit	Leit	0.0	Rigit	Leit	3.0	Rigit	Leit	3.0	Rigiil
		0.0			0.0			0.0			0.0	
Link Offset(m)		1.6			1.6			1.6			1.6	
Crosswalk Width(m)		1.0			1.0			1.0			1.0	
Two way Left Turn Lane	4.40	4.00	4.40	4.40	4.00	1.16	4.05	4.40	1.16	4.05	4.40	1.16
Headway Factor	1.16	1.23	1.16	1.16	1.23	1.16	1.25	1.16	1.16	1.25	1.16	
Turning Speed (k/h)		0	14		2	14		2	14	1	2	14
Number of Detectors	1	2		1			1					
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 9 Lanes, Volumes, Timings 538: Strachan Ave & King St

	ገ21

	•	-	•	•	←	•	4	†	1	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	2	2		6	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	20.0	20.0		20.0	20.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		27.0	27.0		27.0	27.0	
Total Split (s)	38.0	38.0		38.0	38.0		42.0	42.0		42.0	42.0	
Total Split (%)	47.5%	47.5%		47.5%	47.5%		52.5%	52.5%		52.5%	52.5%	
Maximum Green (s)	32.0	32.0		32.0	32.0		36.0	36.0		36.0	36.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0		-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		25	25		27	27		100	100	
Act Effct Green (s)		33.0			33.0		37.0	37.0		37.0	37.0	
Actuated g/C Ratio		0.41			0.41		0.46	0.46		0.46	0.46	
v/c Ratio		0.56			0.86		0.85	0.77		0.15	0.37	
Control Delay		19.2			20.3		45.2	25.3		22.5	23.9	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		19.2			20.3		45.2	25.3		22.5	23.9	
LOS		В			С		D	С		C	С	
Approach Delay		19.2			20.3			32.1			23.8	
Approach LOS		В			С			С			С	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 50 (63%), Reference	ed to phase	2:EBTL a	and 6:WB	TL, Start	of 1st Gre	en						
Natural Cycle: 55												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.86												
Intersection Signal Delay:	24.1			li li	ntersection	LOS: C						
Intersection Capacity Utiliz	ation 96.1%			10	CU Level o	of Service	F					
Analysis Period (min) 15												
Califo and Dhases, 500:	Ctracker A	0 I/ir-	Ct									
Splits and Phases: 538:	Strachan A	ve a ring	ા									

538: Strachan Ave & King St

09/30/2021

Synchro 11 Report

Page 11

	-	-	1	1	-	. ↓
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	608	975	293	561	29	280
v/c Ratio	0.56	0.86	0.85	0.77	0.15	0.37
Control Delay	19.2	20.3	45.2	25.3	22.5	23.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	19.2	20.3	45.2	25.3	22.5	23.9
Queue Length 50th (m)	33.7	44.5	37.8	63.4	3.6	37.9
Queue Length 95th (m)	49.3	#71.0	#84.2	#107.3	m7.6	m57.3
Internal Link Dist (m)	231.2	334.6		400.1		355.9
Turn Bay Length (m)			25.0		25.0	
Base Capacity (vph)	1080	1133	343	731	197	751
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.56	0.86	0.85	0.77	0.15	0.37

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis

538: Strachan Ave & King St

09/30/2021

	۶	→	•	•	+	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		ሻ	1 2		ሻ	î,	
Traffic Volume (vph)	0	472	100	4	845	68	275	358	169	27	236	27
Future Volume (vph)	0	472	100	4	845	68	275	358	169	27	236	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Lane Util. Factor		0.95			0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.93			0.99		1.00	0.96		1.00	0.98	
Flpb, ped/bikes		1.00			1.00		0.88	1.00		0.97	1.00	
Frt		0.97			0.99		1.00	0.95		1.00	0.98	
Flt Protected		1.00			1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		2565			2863		1304	1536		1470	1615	
Flt Permitted		1.00			0.95		0.54	1.00		0.28	1.00	
Satd. Flow (perm)		2565			2728		743	1536		428	1615	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	502	106	4	899	72	293	381	180	29	251	29
RTOR Reduction (vph)	0	22	0	0	8	0	0	22	0	0	5	0
Lane Group Flow (vph)	0	586	0	0	967	0	293	540	0	29	275	0
Confl. Peds. (#/hr)	83		194	194		83	170		89	89		170
Confl. Bikes (#/hr)			9			7			26			6
Heavy Vehicles (%)	0%	6%	17%	100%	4%	0%	2%	1%	0%	0%	1%	0%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		32.0			32.0		36.0	36.0		36.0	36.0	
Effective Green, q (s)		33.0			33.0		37.0	37.0		37.0	37.0	
Actuated g/C Ratio		0.41			0.41		0.46	0.46		0.46	0.46	
Clearance Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		1058			1125		343	710		197	746	
v/s Ratio Prot		0.23						0.35			0.17	
v/s Ratio Perm					c0.35		c0.39			0.07	•	
v/c Ratio		0.55			0.86		0.85	0.76		0.15	0.37	
Uniform Delay, d1		17.9			21.4		19.1	17.8		12.4	13.9	
Progression Factor		1.00			0.50		1.00	1.00		1.59	1.64	
Incremental Delay, d2		2.1			8.5		22.8	7.5		1.4	1.3	
Delay (s)		20.0			19.2		41.9	25.3		21.1	24.1	
Level of Service		В			В		D	С		С	С	
Approach Delay (s)		20.0			19.2			31.0			23.8	
Approach LOS		В			В			C			C	
Intersection Summary		_			_			_			-	
HCM 2000 Control Delay			23.6	U	CM 2000	Lovel of G	Sorvico		С			
HCM 2000 Volume to Capacity	, ratio		0.86	П	CIVI 2000	revei oi s	DEI VICE		U			
Actuated Cycle Length (s)	Tallo		80.0	0	um of lost	time (c)			10.0			
Intersection Capacity Utilization	n .		96.1%		um of lost CU Level o				10.0 F			
Analysis Period (min)			96.1%	IC	o Level (o Service			г			
c Critical Lane Group			13									

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

^{# 95}th percentile volume exceeds capacity, queue may be longer.

m Volume for 95th percentile queue is metered by upstream signal.

09/30/2021

74 74
74
14
1900
0.95
0
0
Yes
331
12
0.87
5%
18
85
0
No
Right
J .
1.16
14

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 13 Lanes, Volumes, Timings 539: Dufferin St & King St

	٠	→	•	•	←	•	•	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio		0.42			0.42			0.47			0.37	
v/c Ratio		1.04dl			1.00			0.80			0.97	
Control Delay		55.7			53.8			26.8			58.6	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		55.7			53.8			26.8			58.6	
LOS		Е			D			С			Е	
Approach Delay		55.7			53.8			26.8			58.6	
Approach LOS		Е			D			С			Е	
Intersection Summary												
Area Type:	CBD											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced	to phase 2:I	EBTL and	6:WBTL	, Start of	1st Green							
Natural Cycle: 90												
Control Type: Pretimed												
Maximum v/c Ratio: 1.00												
Intersection Signal Delay: 4	8.0			In	tersection	LOS: D						
Intersection Capacity Utiliza	tion 106.8%	Ď		IC	U Level o	of Service	G					
Analysis Period (min) 15												
dl Defacto Left Lane. Rec	code with 1	though la	ne as a le	eft lane.								

Splits and Phases: 539: Dufferin St & King St

539: Dufferin St & King St

09/30/2021

	-	-	- ↑	Ţ
			•	*
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	688	1083	843	593
v/c Ratio	1.04dl	1.00	0.80	0.97
Control Delay	55.7	53.8	26.8	58.6
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	55.7	53.8	26.8	58.6
Queue Length 50th (m)	59.0	94.5	56.6	50.5
Queue Length 95th (m)	#92.2	#133.0	73.1	#81.3
Internal Link Dist (m)	267.1	292.7	188.5	361.1
Turn Bay Length (m)				
Base Capacity (vph)	704	1085	1055	611
Starvation Cap Reductn	n 0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.98	1.00	0.80	0.97
Spillback Cap Reductn Storage Cap Reductn	0	0	0	0

HCM Signalized Intersection Capacity Analysis 539: Dufferin St & King St

09/30/2021

	•	→	•	•	•	•	1	†	1	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			414			414	
Traffic Volume (vph)	81	464	54	33	805	104	54	638	42	113	329	74
Future Volume (vph)	81	464	54	33	805	104	54	638	42	113	329	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			4.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.97			0.96			0.98			0.95	
Flpb, ped/bikes		1.00			1.00			0.99			0.98	
Frt		0.99			0.98			0.99			0.98	
Flt Protected		0.99			1.00			1.00			0.99	
Satd. Flow (prot)		2876			2812			2669			2538	
Flt Permitted		0.57			0.90			0.82			0.63	
Satd. Flow (perm)		1651			2547			2196			1626	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	93	533	62	38	925	120	62	733	48	130	378	85
RTOR Reduction (vph)	0	8	0	0	10	0	0	5	0	0	15	0
Lane Group Flow (vph)	0	680	0	0	1073	0	0	838	0	0	578	0
Confl. Peds. (#/hr)	296		328	328		296	331		287	287		331
Confl. Bikes (#/hr)			7			80			128			12
Heavy Vehicles (%)	6%	3%	4%	2%	2%	4%	7%	9%	9%	5%	13%	5%
Bus Blockages (#/hr)	12	12	12	24	24	24	12	30	30	0	18	18
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases	1 01111	2		1 01111	6		3	8		1 01111	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	_	37.0		·	37.0		·	41.0		•	31.0	
Effective Green, g (s)		38.0			38.0			42.0			33.0	
Actuated g/C Ratio		0.42			0.42			0.47			0.37	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Lane Grp Cap (vph)		697			1075			1061			596	
v/s Ratio Prot		001			1075			c0.06			330	
v/s Ratio Perm		0.41			c0.42			0.31			c0.36	
v/c Ratio		1.04dl			1.00			0.79			0.97	
Uniform Delay, d1		25.5			26.0			20.3			28.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		28.6			26.9			6.0			30.1	
Delay (s)		54.1			52.9			26.3			58.1	
Level of Service		D D			J2.9 D			20.5 C			50.1 E	
Approach Delay (s)		54.1			52.9			26.3			58.1	
Approach LOS		J4.1			J2.9 D			20.5 C			50.1 E	
					U							
Intersection Summary HCM 2000 Control Delay			47.1	- 11	CM 2000	Lovelof	Canica		D			
HCM 2000 Control Delay	oity rotio		0.97	н	CIVI ZUUU	revei oi	SELVICE		U			
Actuated Cycle Length (s)	City ratio		90.0	0	um of los	time (c)			12.0			
	tion		106.8%		U Level				12.0 G			
Intersection Capacity Utilization Analysis Period (min)	uon		100.8%	IC	o Level (o Service			G			
di Defacto Left Lane Rec	odo with 1	though lo		off lane								

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

c Critical Lane Group

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Detector 2 Type

Synchro 11 Report Page 18

	۶	→	•	•	←	•	4	†	<i>></i>	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1 >			ર્ન	7	ሻ	^		ሻ	^	
Traffic Volume (vph)	139	7	208	77	88	61	125	486	87	89	725	67
Future Volume (vph)	139	7	208	77	88	61	125	486	87	89	725	67
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Storage Length (m)	25.0		0.0	0.0		50.0	30.0		0.0	25.0		0.0
Storage Lanes	1		0	0		1	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.78	0.85			0.96	0.68		0.98		0.98	0.99	
Frt		0.855				0.850		0.977			0.987	
Flt Protected	0.950				0.977		0.950			0.950		
Satd. Flow (prot)	1589	1287	0	0	1605	1507	1652	1683	0	1574	1708	0
Flt Permitted	0.559				0.561		0.069			0.324		
Satd. Flow (perm)	732	1287	0	0	888	1019	120	1683	0	524	1708	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		219				191		7			3	
Link Speed (k/h)		30			50			40			40	
Link Distance (m)		143.4			229.0			205.6			241.4	
Travel Time (s)		17.2			16.5			18.5			21.7	
Confl. Peds. (#/hr)	129		55	55	10.0	129	40	10.0	37	37		40
Confl. Bikes (#/hr)			3			120			4	Ŭ.		3
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	6%	12%	6%	1%	26%	0%	2%	8%	2%	7%	8%	1%
Adj. Flow (vph)	146	7	219	81	93	64	132	512	92	94	763	71
Shared Lane Traffic (%)								· · · ·				
Lane Group Flow (vph)	146	226	0	0	174	64	132	604	0	94	834	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	2011	3.0	. ug.ic	20.0	3.0	, again	20.0	3.5	rugiii	20.0	3.5	. ug.u
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.09	1.01	1.01	1.01	1.01	1.09	1.09	1.01	1.01	1.09	1.01	1.01
Turning Speed (k/h)	24	1.01	14	24	1.01	14	24	1.01	14	24		14
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5	2.0	2.0	30.5		2.0	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8	2.0	2.0	1.8		2.0	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	J/			·		J/	A	n		J/	n	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7	0.0	0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	

	۶	→	*	•	-	•	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		8	8	8	5	2		6	6	
Switch Phase						20.0		00.0				
Minimum Initial (s)	32.0	32.0		32.0	32.0	32.0	7.0	29.0		29.0	29.0	
Minimum Split (s)	39.0	39.0		39.0	39.0	39.0	14.0	36.0		36.0	36.0	
Total Split (s)	39.0	39.0		39.0	39.0	39.0	14.0	71.0		57.0 37.0%	57.0	
Total Split (%)	25.3%	25.3%		25.3%	25.3%	25.3%	9.1%	46.1% 64.0			37.0%	
Maximum Green (s) Yellow Time (s)	32.0 4.0	32.0 4.0		32.0 4.0	32.0 4.0	32.0 4.0	7.0 4.0	3.0		50.0	50.0 3.0	
All-Red Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	4.0		4.0	4.0	
Lost Time Adjust (s)	-1.0	-1.0		3.0	-1.0	-1.0	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	0.0	0.0			0.0	0.0	Lead	0.0		Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max	Max	None	Max		Max	Max	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	110110	7.0		7.0	7.0	
Flash Dont Walk (s)	25.0	25.0		25.0	25.0	25.0		22.0		22.0	22.0	
Pedestrian Calls (#/hr)	18	18		100	100	100		11		12	12	
Act Effct Green (s)	33.5	33.5			33.5	33.5	65.9	65.9		51.7	51.7	
Actuated g/C Ratio	0.27	0.27			0.27	0.27	0.54	0.54		0.42	0.42	
v/c Ratio	0.73	0.44			0.72	0.15	0.80	0.66		0.43	1.15	
Control Delay	65.4	9.0			60.7	0.8	56.8	27.3		36.6	116.2	
Queue Delay	0.0	0.0			0.0	0.0	0.0	1.3		0.0	0.0	
Total Delay	65.4	9.0			60.7	0.8	56.8	28.5		36.6	116.2	
LOS	E	Α			Е	Α	Е	С		D	F	
Approach Delay		31.1			44.6			33.6			108.1	
Approach LOS		С			D			С			F	
Intersection Summary												
Area Type:	Other											
Cycle Length: 154												
Actuated Cycle Length: 122	2											
Natural Cycle: 145												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 1.15												
Intersection Signal Delay: 6					ntersectio							
Intersection Capacity Utilization 128.8% ICU Level of Service H												
Analysis Period (min) 15	Analysis Period (min) 15											
Splits and Phases: 571:	Strachan A	ve & Cana	da Blvd/F	leet St								

∦kØ10

9014

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements

HDR Corporation

₩Ø8

#1_{Ø16}

Synchro 11 Report Page 19

Lane Group	Ø10	Ø12	Ø14	Ø16
Detector 2 Channel				
Detector 2 Extend (s)				
Turn Type				
Protected Phases	10	12	14	16
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	7.0	7.0	7.0	7.0
Minimum Split (s)	22.0	22.0	22.0	22.0
Total Split (s)	22.0	22.0	22.0	22.0
Total Split (%)	14%	14%	14%	14%
Maximum Green (s)	14.0	14.0	14.0	14.0
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	4.0	4.0	4.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Vehicle Extension (s)	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None
Walk Time (s)	0.0	0.0	0.0	0.0
Flash Dont Walk (s)	0.0	0.0	0.0	0.0
Pedestrian Calls (#/hr)	16	16	16	16
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Internation Comments				

HDR Corporation

Lanes, Volumes, Timings 571: Strachan Ave & Canada Blvd/Fleet St

Synchro 11 Report

Page 21

	•	-	←	•	4	†	-	↓	
Lane Group	EBL	EBT	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	146	226	174	64	132	604	94	834	
v/c Ratio	0.73	0.44	0.72	0.15	0.80	0.66	0.43	1.15	
Control Delay	65.4	9.0	60.7	0.8	56.8	27.3	36.6	116.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	
Total Delay	65.4	9.0	60.7	0.8	56.8	28.5	36.6	116.2	
Queue Length 50th (m)	27.3	1.1	32.5	0.0	13.4	76.6	12.8	~195.8	
Queue Length 95th (m)	#78.0	23.7	#86.9	0.0	#62.7	185.1	39.6	#379.1	
Internal Link Dist (m)		119.4	205.0			181.6		217.4	
Turn Bay Length (m)	25.0			50.0	30.0		25.0		
Base Capacity (vph)	200	511	243	418	166	912	221	725	
Starvation Cap Reductn	0	0	0	0	0	138	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.73	0.44	0.72	0.15	0.80	0.78	0.43	1.15	

or i. Strachan Ave	& Carra	ua Div	u/i icc	ιοι							00/0	TOTEGET
	۶	→	•	•	←	•	4	†	/	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ĵ.			ની	7	, j	ĥ		Ţ	ĥ	
Traffic Volume (vph)	139	7	208	77	88	61	125	486	87	89	725	67
Future Volume (vph)	139	7	208	77	88	61	125	486	87	89	725	67
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	3.5	3.5
Total Lost time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.87			1.00	0.72	1.00	0.98		1.00	0.99	
Flpb, ped/bikes	0.81	1.00			0.97	1.00	1.00	1.00		0.97	1.00	
Frt	1.00	0.85			1.00	0.85	1.00	0.98		1.00	0.99	
Flt Protected	0.95	1.00			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1281	1314			1551	1084	1652	1687		1530	1711	
Flt Permitted	0.56	1.00			0.56	1.00	0.07	1.00		0.32	1.00	
Satd. Flow (perm)	753	1314			891	1084	120	1687		522	1711	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	146	7	219	81	93	64	132	512	92	94	763	71
RTOR Reduction (vph)	0	164	0	0	0	48	0	4	0	0	2	0
Lane Group Flow (vph)	146	62	0	0	174	16	132	600	0	94	832	0
Confl. Peds. (#/hr)	129		55	55		129	40		37	37		40
Confl. Bikes (#/hr)			3						4			3
Heavy Vehicles (%)	6%	12%	6%	1%	26%	0%	2%	8%	2%	7%	8%	1%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		Perm	NA	- 77
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8		8	2	_		6		
Actuated Green, G (s)	32.4	32.4		·	32.4	32.4	64.9	64.9		50.8	50.8	
Effective Green, q (s)	33.4	33.4			33.4	33.4	65.9	65.9		51.8	51.8	
Actuated g/C Ratio	0.25	0.25			0.25	0.25	0.50	0.50		0.39	0.39	
Clearance Time (s)	7.0	7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	190	332			225	274	153	841		204	670	
v/s Ratio Prot	130	0.05			220	217	0.05	c0.36		204	c0.49	
v/s Ratio Perm	0.19	0.00			c0.20	0.01	0.37	00.00		0.18	60.43	
v/c Ratio	0.77	0.19			0.77	0.06	0.86	0.71		0.46	1.24	
Uniform Delay, d1	45.8	38.7			45.8	37.4	32.7	25.8		29.8	40.1	
Progression Factor	1.00	1.00			1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	25.3	1.2			22.4	0.4	36.2	5.1		7.3	121.3	
Delay (s)	71.1	40.0			68.2	37.8	68.9	30.9		37.1	161.5	
Level of Service	Ε.	D			E	D	E	C		D	F	
Approach Delay (s)	_	52.2			60.0		_	37.7			148.9	
Approach LOS		D D			00.0 E			D			F	
Intersection Summary					_							
HCM 2000 Control Delay			87.8	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.00	- 11	O.W. 2000	2040101	COLAICO					
Actuated Cycle Length (s)	only rutto		132.1	S	um of los	t time (s)			34.0			
Intersection Capacity Utiliza	tion		128.8%		U Level		2		л ч. 0			
Analysis Period (min)			15	ic		J. OGI VICE			- ''			
c Critical Lane Group			- 10									
5 S.Mour Lario Group												

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements

HDR Corporation

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Detector 2 Channel

Synchro 11 Report Page 23 Lanes, Volumes, Timings

1344: Lakeshore Blvd & British Colombia Rd

	•	-	•	•	←	•	1	†	/	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 2 Extend (s)		0.0						0.0				
Turn Type	Perm	NA				Perm		NA				
Protected Phases		4						2				
Permitted Phases	4					9						
Detector Phase	4	4				9		2				
Switch Phase												
Minimum Initial (s)	7.0	7.0				7.0		22.0				
Minimum Split (s)	13.0	13.0				30.0		29.0				
Total Split (s)	37.0	37.0				30.0		77.0				
Total Split (%)	25.7%	25.7%				20.8%		53.5%				
Maximum Green (s)	31.0	31.0				24.0		70.0				
Yellow Time (s)	4.0	4.0				4.0		4.0				
All-Red Time (s)	2.0	2.0				2.0		3.0				
Lost Time Adjust (s)	-1.0	-3.0				-1.0		-1.0				
Total Lost Time (s)	5.0	3.0				5.0		6.0				
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Recall Mode	None	None				None		None				
Walk Time (s)	0.0	0.0						7.0				
Flash Dont Walk (s)	0.0	0.0						15.0				
Pedestrian Calls (#/hr)	0	0						0				
Act Effct Green (s)	32.1	34.1				17.8		71.1				
Actuated g/C Ratio	0.23	0.25				0.13		0.52				
v/c Ratio	0.13	1.15				0.87		1.17				
Control Delay	5.3	135.1				31.8		110.7				
Queue Delay	0.0	0.0				0.0		0.0				
Total Delay	5.3	135.1				31.8		110.7				
LOS	A	F				С		F				
Approach Delay	**	123.0			31.8	-		110.7				
Approach LOS		F			С			F				
Intersection Summary												
Area Type:	Other											
Cycle Length: 144												
Actuated Cycle Length: 13	7											
Natural Cycle: 150												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 1.17												
Intersection Signal Delay:					tersection							
Intersection Capacity Utiliz	ation 95.9%			IC	U Level	of Service	F					
Analysis Period (min) 15												
Splits and Phases: 1344	: Lakeshore	Blvd & Br	ritish Colo	mbia Rd								
↑ ø₂						<u>_</u> 4 _{Ø4}				Ø9		

1344: Lakeshore Blvd & British Colombia Rd

09/30/2021

	•	-	•	†
		•		'
Lane Group	EBL	EBT	WBR	NBT
Lane Group Flow (vph)	57	554	627	3044
v/c Ratio	0.13	1.15	0.87	1.17
Control Delay	5.3	135.1	31.8	110.7
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	5.3	135.1	31.8	110.7
Queue Length 50th (m)	0.0	~177.0	31.6	~360.0
Queue Length 95th (m)	7.1	#262.6	56.7	#413.3
Internal Link Dist (m)		387.9		776.6
Turn Bay Length (m)	15.0		80.0	
Base Capacity (vph)	444	481	841	2611
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.13	1.15	0.75	1.17

HCM Signalized Intersection Capacity Analysis 1344: Lakeshore Blvd & British Colombia Rd

	۶	→	\rightarrow	•	←	•	4	†	/	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^				77		ተተኈ				
Traffic Volume (vph)	54	526	0	0	0	596	0	2888	4	0	0	0
Future Volume (vph)	54	526	0	0	0	596	0	2888	4	0	0	0
Ideal Flow (vphpl)	1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	5.0	3.0				5.0		6.0				
Lane Util. Factor	1.00	1.00				0.88		0.91				
Frpb, ped/bikes	1.00	1.00				0.98		1.00				
Flpb, ped/bikes	1.00	1.00				1.00		1.00				
Frt	1.00	1.00				0.85		1.00				
Flt Protected	0.95	1.00				1.00		1.00				
Satd. Flow (prot)	1652	1939				2699		5028				
Flt Permitted	0.95	1.00				1.00		1.00				
Satd. Flow (perm)	1652	1939				2699		5028				
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	57	554	0	0	0	627	0	3040	4	0	0	0
RTOR Reduction (vph)	44	0	0	0	0	370	0	0	0	0	0	0
Lane Group Flow (vph)	13	554	0	0	0	257	0	3044	0	0	0	0
Confl. Peds. (#/hr)			1	1								
Confl. Bikes (#/hr)			2			5						
Turn Type	Perm	NA				Perm		NA				
Protected Phases		4						2				
Permitted Phases	4					9						
Actuated Green, G (s)	31.1	31.1				16.8		70.1				
Effective Green, g (s)	32.1	34.1				17.8		71.1				
Actuated g/C Ratio	0.23	0.25				0.13		0.52				
Clearance Time (s)	6.0	6.0				6.0		7.0				
Vehicle Extension (s)	3.0	3.0				3.0		3.0				
Lane Grp Cap (vph)	387	482				350		2609				
v/s Ratio Prot		c0.29						c0.61				
v/s Ratio Perm	0.01					c0.10						
v/c Ratio	0.03	1.15				0.73		1.17				
Uniform Delay, d1	40.5	51.5				57.3		33.0				
Progression Factor	1.00	1.00				1.00		1.00				
Incremental Delay, d2	0.0	88.9				7.8		79.6				
Delay (s)	40.5	140.4				65.1		112.5				
Level of Service	D	F				Е		F				
Approach Delay (s)		131.1			65.1			112.5			0.0	
Approach LOS		F			Е			F			Α	
Intersection Summary												
HCM 2000 Control Delay			108.2	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.11									
Actuated Cycle Length (s)			137.0		um of los				15.0			
Intersection Capacity Utiliza	ation		95.9%	IC	U Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

HCM 2000 Control Delay	108.2	HCM 2000 Level of Service	F	
HCM 2000 Volume to Capacity ratio	1.11			
Actuated Cycle Length (s)	137.0	Sum of lost time (s)	15.0	
Intersection Capacity Utilization	95.9%	ICU Level of Service	F	
Analysis Period (min)	15			
Critical Lane Group				

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

09/30/2021

	۶	-	•	•	←	•	4	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			414			414	
Traffic Volume (vph)	5	4	2	236	0	189	0	632	194	91	434	0
Future Volume (vph)	5	4	2	236	0	189	0	632	194	91	434	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.96			0.88			0.87			0.98	
Frt		0.979			0.940			0.965				
Flt Protected		0.977			0.973						0.991	
Satd. Flow (prot)	0	1761	0	0	1600	0	0	2754	0	0	3298	0
Flt Permitted		0.866			0.820						0.624	
Satd. Flow (perm)	0	1534	0	0	1260	0	0	2754	0	0	2044	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			41			66				
Link Speed (k/h)		50			40			50			50	
Link Distance (m)		106.6			106.9			249.2			212.5	
Travel Time (s)		7.7			9.6			17.9			15.3	
Confl. Peds. (#/hr)	86		90	90	0.0	86	128	17.0	231	231	10.0	128
Confl. Bikes (#/hr)									128			12
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	0%	0%	0%	1%	0%	2%	0%	2%	2%	0%	1%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	12	30	30	12	30	30
Adj. Flow (vph)	6	5	2	268	0	215	0	718	220	103	493	0
Shared Lane Traffic (%)	U	J		200	U	210	U	7 10	220	100	400	U
Lane Group Flow (vph)	0	13	0	0	483	0	0	938	0	0	596	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	LOIL	0.0	rtigiit	LUIT	0.0	rtigitt	LOIL	0.0	rtigiit	LOIL	0.0	rtigrit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.10	1.01	1.01	1.10	1.01
Turning Speed (k/h)	24	1.01	1.01	24	1.01	14	24	1.10	14	24	1.10	1.01
Number of Detectors	1	2	17	1	2	17	1	2	17	1	2	17
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Type Detector 1 Channel	CI+EX	CI+EX		CI+EX	CI+EX		CI+EX	CI+EX		CI+EX	CI+EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
\ /	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s) Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
								1.8			1.8	
Detector 2 Size(m)		1.8			1.8							
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	η.	0.0		ρ.	0.0			0.0		р.	0.0	
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 27

Lanes, Volumes, Timings 1449: Dufferin St & Dwy/Liberty St

	•	-	•	•	←	•	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Minimum Split (s)	24.0	24.0		24.0	24.0		25.0	25.0		25.0	25.0	
Total Split (s)	39.0	39.0		39.0	39.0		41.0	41.0		41.0	41.0	
Total Split (%)	48.8%	48.8%		48.8%	48.8%		51.3%	51.3%		51.3%	51.3%	
Maximum Green (s)	34.0	34.0		34.0	34.0		35.0	35.0		35.0	35.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-2.0			-1.0			-1.0	
Total Lost Time (s)		4.0			3.0			5.0			5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	30	30		29	29		100	100		100	100	
Act Effct Green (s)	00	32.2		20	33.2		100	38.8		100	38.8	
Actuated g/C Ratio		0.40			0.42			0.48			0.48	
v/c Ratio		0.02			0.88			0.69			0.60	
Control Delay		12.0			38.9			18.7			19.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		12.0			38.9			18.7			19.2	
LOS		12.0 B			D D			В			13.2 B	
Approach Delay		12.0			38.9			18.7			19.2	
Approach LOS		12.0 B			50.9 D			В			13.2 B	
		ь			U			D			ь	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 79 (99%), Reference	ced to phase	2:NBTL a	and 6:SB	TL, Start	of Green							
Natural Cycle: 50												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.88												
Intersection Signal Delay:	23.6			- In	ntersection	LOS: C						
Intersection Capacity Utiliz	ation 86.0%			10	CU Level	of Service	Ε					
Analysis Period (min) 15												
Splits and Phases: 1449	9: Dufferin S	t & Dww/Li	horty St									
	. Dulleliil 3	. G. DWy/LI	DUTTY OF		1.3							
Ø2 (R)						Ø4						
41 s					39 s							

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 28

1449: Dufferin St & Dwy/Liberty St

09/30/2021

Synchro 11 Report

Page 29

	-	←	†	↓
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	13	483	938	596
v/c Ratio	0.02	0.88	0.69	0.60
Control Delay	12.0	38.9	18.7	19.2
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	12.0	38.9	18.7	19.2
Queue Length 50th (m)	0.9	56.7	55.3	35.5
Queue Length 95th (m)	3.8	#107.1	74.6	51.2
Internal Link Dist (m)	82.6	82.9	225.2	188.5
Turn Bay Length (m)				
Base Capacity (vph)	672	589	1368	990
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.02	0.82	0.69	0.60

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1449: Dufferin St & Dwy/Liberty St

09/30/2021

	۶	→	•	•	←	4	4	†	/	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			413			413-	
Traffic Volume (vph)	5	4	2	236	0	189	0	632	194	91	434	0
Future Volume (vph)	5	4	2	236	0	189	0	632	194	91	434	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			3.0			5.0			5.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.98			0.94			0.87			1.00	
Flpb, ped/bikes		0.98			0.93			1.00			0.98	
Frt		0.98			0.94			0.96			1.00	
Flt Protected		0.98			0.97			1.00			0.99	
Satd. Flow (prot)		1733			1495			2756			3245	
Flt Permitted		0.87			0.82			1.00			0.62	
Satd. Flow (perm)		1536			1261			2756			2042	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	6	5	2	268	0	215	0	718	220	103	493	0
RTOR Reduction (vph)	0	1	0	0	24	0	0	34	0	0	0	0
Lane Group Flow (vph)	0	12	0	0	459	0	0	904	0	0	596	0
Confl. Peds. (#/hr)	86		90	90		86	128		231	231		128
Confl. Bikes (#/hr)									128			12
Heavy Vehicles (%)	0%	0%	0%	1%	0%	2%	0%	2%	2%	0%	1%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	12	30	30	12	30	30
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		31.2			31.2			37.8			37.8	
Effective Green, q (s)		32.2			33.2			38.8			38.8	
Actuated g/C Ratio		0.40			0.42			0.48			0.48	
Clearance Time (s)		5.0			5.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		618			523			1336			990	
v/s Ratio Prot								c0.33				
v/s Ratio Perm		0.01			c0.36						0.29	
v/c Ratio		0.02			0.88			0.68			0.60	
Uniform Delay, d1		14.4			21.5			15.8			15.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.0			15.3			2.8			2.7	
Delay (s)		14.4			36.8			18.6			17.7	
Level of Service		В			D			В			В	
Approach Delay (s)		14.4			36.8			18.6			17.7	
Approach LOS		В			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			22.6	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.78	- 11	O.71 2000	L040101	JOI VICO		- 0			
Actuated Cycle Length (s)	., 1000		80.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilization	n		86.0%		U Level				5.0 E			
Analysis Period (min)			15			501 1100						
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	22.6	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.78			
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	9.0	
Intersection Capacity Utilization	86.0%	ICU Level of Service	Е	
Analysis Period (min)	15			
c Critical Lane Group				

09/30/2021

	•	-	•	•	←	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			4î>			413			414	
Traffic Volume (vph)	15	511	34	0	902	211	84	251	7	94	164	111
Future Volume (vph)	15	511	34	0	902	211	84	251	7	94	164	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ped Bike Factor		0.99			0.97			0.98			0.94	
Frt		0.991			0.972			0.997			0.955	
Flt Protected		0.999						0.988			0.987	
Satd. Flow (prot)	0	2778	0	0	2797	0	0	3132	0	0	2696	0
Flt Permitted		0.901						0.707			0.721	
Satd. Flow (perm)	0	2505	0	0	2797	0	0	2210	0	0	1928	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		15			65			3			44	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		199.1			255.2			127.7			380.6	
Travel Time (s)		14.3			18.4			11.5			34.3	
Confl. Peds. (#/hr)	132		116	116		132	104		145	145		104
Confl. Bikes (#/hr)						49						
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles (%)	100%	6%	0%	100%	4%	0%	0%	1%	0%	19%	3%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	18	601	40	0	1061	248	99	295	8	111	193	131
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	659	0	0	1309	0	0	402	0	0	435	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0	-		0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane												
Headway Factor	1.16	1.23	1.16	1.16	1.23	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 31

Lanes, Volumes, Timings 1628: Shaw St & King St

Protected Phases 2 6 6 4 4 8 Permitted Phases 2 6 6 4 4 8 Detector Phase 2 2 6 6 6 4 4 8 8 Detector Phase 2 2 6 6 6 4 4 4 8 8 Switch Phase 5 Switch Phase 6 Switch Phase 6 Switch Phase 7 Minimum Initial (s) 22.0 22.0 22.0 22.0 20.0 20.0 20.0 20.	1628: Shaw St &	•	→	•	•	+	4	•	<u>†</u>	<u> </u>	\		4
Permitted Phases 2 6 6 4 4 8 8 Delector Phase 2 2 6 6 6 4 4 4 8 8 Witch Phase 2 2 2 6 6 6 4 4 4 8 8 8 Witch Phase 4 4 8 8 8 Witch Phase 5 2 2 0 6 6 4 4 4 8 8 8 Witch Phase 6 2 2 2 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Detector Phase 2	Protected Phases		2			6			4			8	
Detector Phase 2	Permitted Phases	2			6			4			8	-	
Minimum Initial (s) 22.0 22.0 22.0 22.0 20.0 20.0 20.0 20.	Detector Phase	2	2		6	6		4	4		8	8	
Minimum Split (s) 28.0 28.0 28.0 28.0 26.0 26.0 26.0 26.0 26.0 Total Split (s) 44.0 44.0 44.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	Switch Phase												
Total Split (s)	Minimum Initial (s)	22.0	22.0		22.0	22.0		20.0	20.0		20.0	20.0	
Total Split (s)	Minimum Split (s)	28.0	28.0		28.0	28.0		26.0	26.0		26.0	26.0	
Total Spiti (%) 62.9% 62.9% 62.9% 37.1% 37.1% 37.1% 37.1% 37.1% Maximum Green (s) 38.0 38.0 38.0 38.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	Total Split (s)	44.0	44.0		44.0	44.0		26.0	26.0		26.0	26.0	
Maximum Green (s) 38.0 38.0 38.0 38.0 20.0 20.0 20.0 20.0 20.0 Pellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Total Split (%)	62.9%	62.9%		62.9%	62.9%		37.1%	37.1%		37.1%	37.1%	
Yellow Time (s)						38.0			20.0			20.0	
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lost Time Adjust (s)		2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			-1.0			-1.0			-1.0			-1.0	
Lead/Lag Optimize? Vehicle Extension (s)													
Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0													
Vehicle Extension (s) 3.0 7.0 7													
Recall Mode		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0									None				
Flash Dont Walk (s) 15.0 15.0 15.0 15.0 13.0 13.0 13.0 13.0 13.0 Pedestrian Calls (#/hr) 100 100 100 100 100 100 100 100 100 10													
Pedestrian Calls (#hr) 100 100 100 100 100 100 100 100 100 Act Effet Green (s) 39.0 39.0 21.0 21.0 21.0 Act Lated g/C Ratio 0.56 0.56 0.30 0.30 0.30 0/c Ratio 0.47 0.82 0.60 0.71 Control Delay 10.4 17.8 25.4 27.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0													
Act Leffct Green (s) 39.0 39.0 21.0 21.0 Actuated g/C Ratio 0.56 0.56 0.30 0.30 0.30 0.47 0.82 0.60 0.71 Control Delay 10.4 17.8 25.4 27.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 Clar Delay 10.4 17.8 25.4 27.4 27.4 Clar Delay 10.4 17.8 25.4 27.4 27.4 27.4 27.4 27.4 27.4 27.4 27													
Actuated g/C Ratio 0.56 0.56 0.30 0.30 0.30 0.30 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.60 0.71 0.82 0.74 0.82 0.74 0.74 0.82 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75													
v/c Ratio 0.47 0.82 0.60 0.71 Control Delay 10.4 17.8 25.4 27.4 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 10.4 17.8 25.4 27.4 LOS B B B C C C Approach Delay 10.4 17.8 25.4 27.4 LOS B B B C C C Approach Delay 10.4 17.8 25.4 27.4 Approach LOS B B C C C C Intersection Summary Area Type: CBD Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	(/												
Control Delay 10.4 17.8 25.4 27.4 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 10.4 17.8 25.4 27.4 LOS B B B C C C Approach Delay 10.4 17.8 25.4 27.4 Approach LOS B B B C C C Approach LOS B B B C C C Intersection Summary Area Type: CBD Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St													
Queue Delay 0.0 0.0 0.0 0.0 Total Delay 10.4 17.8 25.4 27.4 LOS B B C C C Approach Delay 10.4 17.8 25.4 27.4 Approach LOS B B B C C C Intersection Summary Area Type: CBD Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St													
Total Delay 10.4 17.8 25.4 27.4 LOS B B B C C Approach Delay 10.4 17.8 25.4 27.4 Approach LOS B B C C C Approach LOS B B C C C Intersection Summary Area Type: CBD Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St													
B B C C			10.4			17.8			25.4			27.4	
Approach Delay 10.4 17.8 25.4 27.4 Approach LOS B B B C C C Intersection Summary Area Type: CBD Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	LOS												
Approach LOS B B C C C Intersection Summary Area Type: CBD Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St			10.4			17.8			25.4			27.4	
Area Type: CBD Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratic: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	Approach LOS												
Area Type: CBD Cycle Length: 70 Actuated Cycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratic: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	Intersection Summary												
Actuated Čycle Length: 70 Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	Area Type:	CBD											
Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of 1st Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	Cycle Length: 70												
Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	Actuated Cycle Length: 70)											
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St 20 (R) 44 5	Offset: 1 (1%), Reference	d to phase 2	EBTL and	6:WBTL	, Start of	1st Green							
Maximum v/c Ratio: 0.82 Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	Natural Cycle: 60												
Intersection Signal Delay: 18.7 Intersection LOS: B Intersection Capacity Utilization 82.3% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St 26 s	Control Type: Actuated-Co	oordinated											
Intersection Capacity Utilization 82.3% Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	Maximum v/c Ratio: 0.82												
Intersection Capacity Utilization 82.3% Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St	Intersection Signal Delay:	18.7			li li	ntersection	LOS: B						
Analysis Period (min) 15 Splits and Phases: 1628: Shaw St & King St 20 (R) 445					10	CU Level o	of Service	Ε					
Ø4 445 265	Analysis Period (min) 15												
Ø4 445 265	Splits and Phases: 162	8: Shaw St &	Kina St										
44s 26s		000	9 01					⊸¢					
945	Ø2 (R)							1 0	04				
06 (0)	44 s							26 s					
	7 (AC (D)							1 1	10				

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 32

1628: Shaw St & King St

09/30/2021

	-	•	T	¥
Lane Group	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	659	1309	402	435
v/c Ratio	0.47	0.82	0.60	0.71
Control Delay	10.4	17.8	25.4	27.4
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	10.4	17.8	25.4	27.4
Queue Length 50th (m)	24.2	64.3	23.3	23.7
Queue Length 95th (m)	33.0	82.3	34.2	36.1
Internal Link Dist (m)	175.1	231.2	103.7	356.6
Turn Bay Length (m)				
Base Capacity (vph)	1402	1587	665	609
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.47	0.82	0.60	0.71
Intersection Summary				

HCM Signalized Intersection Capacity Analysis 1628: Shaw St & King St

09/30/2021

	۶	→	•	•	←	•	4	†	/	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			413			413			414	
Traffic Volume (vph)	15	511	34	0	902	211	84	251	7	94	164	111
Future Volume (vph)	15	511	34	0	902	211	84	251	7	94	164	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			5.0			5.0	
Lane Util. Factor		0.95			0.95			0.95			0.95	
Frpb, ped/bikes		0.99			0.97			1.00			0.96	
Flpb, ped/bikes		1.00			1.00			0.99			0.98	
Frt		0.99			0.97			1.00			0.95	
Flt Protected		1.00			1.00			0.99			0.99	
Satd. Flow (prot)		2776			2796			3088			2639	
Flt Permitted		0.90			1.00			0.71			0.72	
Satd. Flow (perm)		2505			2796			2209			1928	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	18	601	40	0	1061	248	99	295	8	111	193	131
RTOR Reduction (vph)	0	7	0	0	29	0	0	2	0	0	31	0
Lane Group Flow (vph)	0	652	0	0	1280	0	0	400	0	0	404	0
Confl. Peds. (#/hr)	132		116	116		132	104		145	145		104
Confl. Bikes (#/hr)						49						
Heavy Vehicles (%)	100%	6%	0%	100%	4%	0%	0%	1%	0%	19%	3%	7%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		38.0			38.0			20.0			20.0	
Effective Green, g (s)		39.0			39.0			21.0			21.0	
Actuated g/C Ratio		0.56			0.56			0.30			0.30	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1395			1557			662			578	
v/s Ratio Prot					c0.46							
v/s Ratio Perm		0.26						0.18			c0.21	
v/c Ratio		0.47			0.82			0.60			0.70	
Uniform Delay, d1		9.3			12.7			20.9			21.7	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.1			5.0			1.6			3.7	
Delay (s)		10.4			17.7			22.5			25.4	
Level of Service		В			В			С			С	
Approach Delay (s)		10.4			17.7			22.5			25.4	
Approach LOS		В			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			17.9	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.78									
Actuated Cycle Length (s)			70.0	S	um of lost	time (s)			10.0			
Intersection Capacity Utilizat	ion		82.3%		U Level				Е			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	17.9	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.78			
Actuated Cycle Length (s)	70.0	Sum of lost time (s)	10.0	
Intersection Capacity Utilization	82.3%	ICU Level of Service	E	
Analysis Period (min)	15			
0 111 11 0				

c Critical Lane Group

	۶	→	\rightarrow	•	←	•	•	†	/	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			4			4	
Traffic Volume (vph)	0	705	0	0	767	119	0	0	0	99	0	75
Future Volume (vph)	0	705	0	0	767	119	0	0	0	99	0	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor					0.98						0.91	
Frt					0.980						0.942	
Flt Protected											0.972	
Satd. Flow (prot)	0	2707	0	0	2580	0	0	1691	0	0	1263	0
FIt Permitted											0.832	
Satd. Flow (perm)	0	2707	0	0	2580	0	0	1691	0	0	1040	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					35						50	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		318.4			199.1			158.6			196.7	
Travel Time (s)		22.9			14.3			11.4			14.2	
Confl. Peds. (#/hr)	81		183	183		81	91		59	59		91
Confl. Bikes (#/hr)						7						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	0%	13%	0%	0%	14%	12%	0%	0%	0%	17%	0%	16%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Adj. Flow (vph)	0	727	0	0	791	123	0	0	0	102	0	77
Shared Lane Traffic (%)	U	121	U	U	701	120	U	U	U	102	U	
Lane Group Flow (vph)	0	727	0	0	914	0	0	0	0	0	179	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	0.0	rtigiit	Lon	0.0	rtigitt	LOIL	0.0	rtigiit	LOIL	0.0	rtigrit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		1.6			1.6			1.6			1.6	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.16	1.23	1.16	1.16	1.23	1.16	1.16	1.16	1.16	1.16	1.16	1.16
Turning Speed (k/h)	24	1.20	14	24	1.20	14	24	1.10	14	24	1.10	14
Number of Detectors	1	2	17	1	2	17	1	2	17	1	2	17
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel	CITEX	CITEX		CITEX	CITEX		CITEX	CITEX		CITEX	CITEX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Position(m)												
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type		NA			NA					Perm	NA	

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 35

Lanes, Volumes, Timings 1851: King St & Sudbury St

	•	→	•	•	←	*	4	†	/	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Protected Phases		2			6			8			4	
Permitted Phases	2	_		6	v		8	U		4	-	
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	_	-		•	•		•				•	
Minimum Initial (s)	24.0	24.0		24.0	24.0		21.0	21.0		21.0	21.0	
Minimum Split (s)	30.0	30.0		30.0	30.0		26.0	26.0		26.0	26.0	
Total Split (s)	50.0	50.0		50.0	50.0		30.0	30.0		30.0	30.0	
Total Split (%)	62.5%	62.5%		62.5%	62.5%		37.5%	37.5%		37.5%	37.5%	
Maximum Green (s)	44.0	44.0		44.0	44.0		25.0	25.0		25.0	25.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
ost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		5.0			5.0			4.0			4.0	
_ead/Lag												
_ead-Lag Optimize?												
/ehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Valk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	17.0	17.0		17.0	17.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	100	100		25	25		30	30		19	19	
Act Effct Green (s)	100	48.3		20	48.3		00			10	22.7	
Actuated g/C Ratio		0.60			0.60						0.28	
//c Ratio		0.44			0.58						0.54	
Control Delay		9.8			11.3						23.9	
Queue Delay		0.0			0.0						0.0	
Total Delay		9.8			11.3						23.9	
LOS		Α.			В						C	
Approach Delay		9.8			11.3						23.9	
Approach LOS		Α.			В						C	
• •		- ,,										
Intersection Summary Area Type:	CBD											
Cycle Length: 80	ODD											
Actuated Cycle Length: 80												
Offset: 1 (1%), Referenced		FRTI and	6·WRTI	Start of	1et Green							
Natural Cycle: 60	i to pridoc 2	LDTL and	O.VVD1L	, otari or	13t Olocii							
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.58	ordinated											
Intersection Signal Delay:	12 በ			lr.	ntersection	I OS: B						
ntersection Capacity Utiliz					CU Level of		۸.					
Analysis Period (min) 15	.au011 00.070			- 10	O LEVEL (n Service	7.1					
Splits and Phases: 1851	I: King St &	Sudbury S	t									
Ø2 (R)	ang ot a	caubary 0					1					
and the last							- 1 - 1 To	CAL COLOR				

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

₩ Ø6 (R)

Synchro 11 Report Page 36

¶ø8

1851: King St & Sudbury St

09/30/2021

	-	-	¥
Lane Group	EBT	WBT	SBT
Lane Group Flow (vph)	727	914	179
v/c Ratio	0.44	0.58	0.54
Control Delay	9.8	11.3	23.9
Queue Delay	0.0	0.0	0.0
Total Delay	9.8	11.3	23.9
Queue Length 50th (m)	27.5	37.5	16.4
Queue Length 95th (m)	44.1	60.3	34.0
Internal Link Dist (m)	294.4	175.1	172.7
Turn Bay Length (m)			
Base Capacity (vph)	1635	1571	371
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.44	0.58	0.48
Intersection Summary			

HCM Signalized Intersection Capacity Analysis 1851: King St & Sudbury St

09/30/2021

	ၨ	→	•	•	•	•	•	†	/	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			4			4	
Traffic Volume (vph)	0	705	0	0	767	119	0	0	0	99	0	75
Future Volume (vph)	0	705	0	0	767	119	0	0	0	99	0	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0						4.0	
Lane Util. Factor		0.95			0.95						1.00	
Frpb, ped/bikes		1.00			0.98						0.95	
Flpb, ped/bikes		1.00			1.00						0.96	
Frt		1.00			0.98						0.94	
Flt Protected		1.00			1.00						0.97	
Satd. Flow (prot)		2707			2580						1215	
Flt Permitted		1.00			1.00						0.83	
Satd. Flow (perm)		2707			2580						1040	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	0	727	0	0	791	123	0	0	0	102	0	77
RTOR Reduction (vph)	0	0	0	0	14	0	0	0	0	0	36	0
Lane Group Flow (vph)	0	727	0	0	900	0	0	0	0	0	143	0
Confl. Peds. (#/hr)	81		183	183		81	91		59	59		91
Confl. Bikes (#/hr)						7						
Heavy Vehicles (%)	0%	13%	0%	0%	14%	12%	0%	0%	0%	17%	0%	16%
Bus Blockages (#/hr)	24	24	24	24	24	24	0	0	0	0	0	0
Turn Type		NA			NA					Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)		47.3			47.3						21.7	
Effective Green, g (s)		48.3			48.3						22.7	
Actuated g/C Ratio		0.60			0.60						0.28	
Clearance Time (s)		6.0			6.0						5.0	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		1634			1557						295	
v/s Ratio Prot		0.27			c0.35							
v/s Ratio Perm											c0.14	
v/c Ratio		0.44			0.58						0.49	
Uniform Delay, d1		8.6			9.6						23.8	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		0.9			1.6						1.3	
Delay (s)		9.5			11.2						25.1	
Level of Service		Α			В						С	
Approach Delay (s)		9.5			11.2			0.0			25.1	
Approach LOS		Α			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			11.9	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.55									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utilization	1		53.5%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	11.9	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.55			
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	9.0	
Intersection Capacity Utilization	53.5%	ICU Level of Service	Α	
Analysis Period (min)	15			
0.10. 11. 0				

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 38

Lanes, Volumes, Timings 1912: Atlantic Ave & King St

	-	•	•	←	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ⊅	LUI	1102	414	7	7
Traffic Volume (vph)	453	291	2	624	261	270
Future Volume (vph)	453	291	2	624	261	270
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.0	3.0
Storage Length (m)	0.0	0.0	0.0	5.5	30.0	0.0
Storage Lanes		0.0	0.0		30.0	1
		U	2.5		2.5	- 1
Taper Length (m)	0.95	0.95	0.95	0.05	1.00	1.00
Lane Util. Factor Ped Bike Factor		0.95	0.95	0.95 1.00		0.92
	0.79			1.00	0.91	
Frt	0.941				0.050	0.850
Flt Protected	0.400			0==4	0.950	4000
Satd. Flow (prot)	2182	0	0	2774	1486	1233
FIt Permitted				0.953	0.950	
Satd. Flow (perm)	2182	0	0	2643	1354	1136
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	280					33
Link Speed (k/h)	50			50	30	
Link Distance (m)	191.3			318.4	198.0	
Travel Time (s)	13.8			22.9	23.8	
Confl. Peds. (#/hr)	-	341	341		85	65
Confl. Bikes (#/hr)		5				
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	6%	3%	100%	10%	2%	10%
Bus Blockages (#/hr)	24	24	24	24	0	0
Adj. Flow (vph)	521	334	24	717	300	310
	521	334	2	/ 1/	300	310
Shared Lane Traffic (%)	055	٥	0	740	200	240
Lane Group Flow (vph)	855	0	0	719	300	310
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	1.6			1.6	1.6	
Two way Left Turn Lane						
Headway Factor	1.23	1.16	1.16	1.23	1.25	1.25
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (m)	30.5		6.1	30.5	6.1	6.1
Trailing Detector (m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0		0.0	0.0	0.0	0.0
Detector 1 Size(m)	1.8		6.1	1.8	6.1	6.1
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	0.0		0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 39

	-	\rightarrow	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Perm	NA	Perm	Perm
Protected Phases	2			6		
Permitted Phases			6		8	8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	21.0		21.0	21.0	20.0	20.0
Minimum Split (s)	28.0		28.0	28.0	26.0	26.0
Total Split (s)	39.0		39.0	39.0	31.0	31.0
Total Split (%)	55.7%		55.7%	55.7%	44.3%	44.3%
Maximum Green (s)	32.0		32.0	32.0	25.0	25.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	3.0		3.0	3.0	2.0	2.0
Lost Time Adjust (s)	-1.0			-1.0	-1.0	-1.0
Total Lost Time (s)	6.0			6.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	C-Max		C-Max	C-Max	None	None
Walk Time (s)	7.0		7.0	7.0	7.0	7.0
Flash Dont Walk (s)	14.0		14.0	14.0	13.0	13.0
Pedestrian Calls (#/hr) 100		8	8	28	28
Act Effct Green (s)	35.4			35.4	23.6	23.6
Actuated q/C Ratio	0.51			0.51	0.34	0.34
v/c Ratio	0.69			0.54	0.66	0.77
Control Delay	12.4			14.1	27.2	32.3
Queue Delay	0.0			0.0	0.0	0.0
Total Delay	12.4			14.1	27.2	32.3
LOS	В.			В	C	C
Approach Delay	12.4			14.1	29.8	
Approach LOS	В			В	С	
Intersection Summary Area Type:	CBD					
Cycle Length: 70	CDD					
Actuated Cycle Length	h. 70					
		DT and	6-M/DTI	Ctart of 1	ot Croon	
Offset: 6 (9%), Refere	nced to phase 2:t	י מוומ ו סב	U.VVDIL,	SIGIL OF I	si Green	
Natural Cycle: 60	d Coordinated					
Control Type: Actuate						
Maximum v/c Ratio: 0				1.	toroot! -	* I OC. D
Intersection Signal De					ntersectio	
Intersection Capacity				10	JU Level	of Service
Analysis Period (min)	ıυ					
Splits and Phases:	1912: Atlantic Ave	& Kina	St			
		9				

1912: Atlantic Ave & King St

09/30/2021

Synchro 11 Report

Page 41

	-	•	1	
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	855	719	300	310
v/c Ratio	0.69	0.54	0.66	0.77
Control Delay	12.4	14.1	27.2	32.3
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	12.4	14.1	27.2	32.3
Queue Length 50th (m)	27.4	31.8	32.5	31.7
Queue Length 95th (m)	47.0	47.0	52.0	#57.1
Internal Link Dist (m)	167.3	294.4	174.0	
Turn Bay Length (m)			30.0	
Base Capacity (vph)	1241	1336	502	442
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.69	0.54	0.60	0.70

Intersection Summary # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 1912: Atlantic Ave & King St

09/30/2021

Lane Configurations 1		-	\rightarrow	•	•	1	<i>></i>		
Lane Configurations	Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Traeffice Volume (vph)	ane Configurations	# 12			412	*	#		
Future Volume (vph)			291	2					
Interest									
Lane Width 3.5 3.5 3.5 3.5 3.0 3.0			1900						
Total Lost time (s)									
Lane Util. Factor 0.95 0.95 1.00 1.00 Friph, pedibikes 0.79 1.00 1.00 0.92 Filph, pedibikes 1.00 1.00 0.91 1.00 Fit Protected 1.00 1.00 0.95 1.00 Satd. Flow (prot) 2183 2773 1354 1136 Filt Protected 1.00 0.95 0.95 1.00 Satd. Flow (prot) 2183 2643 1354 1136 Filt Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 2183 2643 1354 1136 Feak-hour factor, PHF 0.87 0.87 0.87 0.87 0.87 0.87 0.87 Adj. Flow (vph) 521 334 2 717 300 310 ATTOR Reduction (vph) 138 0 0 0 0 0 22 Lane Group Flow (vph) 717 0 0 0 719 300 288 Confl. Peds. (#/hr) 341 341 85 65 Confl. Bikes (#/hr) 5 Heavy Vehicles (%) 6% 3% 100% 10% 2% 10% Bus Blockages (#/hr) 24 24 24 24 0 0 0 Turm Type NA Perm NA Perm Perm Perm Perm Permeted Phases 6 8 8 8 Actuated Green, G (s) 34.4 34.4 22.6 22.6 Effective Green, G (s) 35.4 35.4 23.6 23.6 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Gry Cap (vph) 1103 1336 456 382 Vis Ratio Perm 0.27 0.22 c0.25 Vis Ratio Perm 0.65 0.65 Uniform Delay, d1 12.7 11.7 19.8 20.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 Delay (s) 15.7 13.3 23.2 28.8 Level of Service B C C C Approach Delay (s) 15.7 13.3 23.2 28.8 Level of Service B C C C C C C C C C C C C C C C C C C									
Frpb, ped/bikes	Lane Util. Factor	0.95			0.95	1.00	1.00		
Fit Protected 1.00 1.00 0.85 Fit Protected 1.00 1.00 0.95 1.00 Satd. Flow (prot) 2183 2773 1354 1136 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 2183 2643 1354 1136 Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 2183 2643 1354 1136 Peak-hour factor, PHF 0.87 0.87 0.87 0.87 0.87 0.87 0.87 Adj. Flow (vph) 521 334 2 717 300 310 RTOR Reduction (vph) 138 0 0 0 0 0 22 Lane Group Flow (vph) 717 0 0 719 300 288 Confl. Pedes. (#hrr) 341 341 85 65 Confl. Bikes (#hrr) 5 Heavy Vehicles (%) 6% 3% 100% 10% 2% 10% Bus Blockages (#hrr) 24 24 24 24 0 0 Turm Type NA Perm NA Perm Perm Perm Verotected Phases 2 6 8 Permitted Phases 6 8 8 8 Actuated Green, G (s) 34.4 34.4 22.6 22.6 Effective Green, G (s) 34.4 34.4 22.6 22.6 Effective Green, G (s) 35.4 35.4 23.6 23.6 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Gry Cap (vph) 1103 1336 456 382 Vis Ratio Port c0.33 Vis Ratio Port c0.34 Vis Ratio Port c0.34 Vis Ratio Port c0.35 Vis Ratio	Frpb. ped/bikes	0.79			1.00	1.00	0.92		
First	Flpb, ped/bikes	1.00			1.00	0.91	1.00		
Satd. Flow (prot) 2183 2773 1354 1136	Frt						0.85		
Fit Permitted	Flt Protected	1.00			1.00	0.95	1.00		
Fit Permitted 1.00 0.95 0.95 1.00 Satd. Flow (perm) 2183 2643 1354 1136 Pereak-hour factor, PHF 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	Satd. Flow (prot)	2183			2773	1354	1136		
Peak-hour factor, PHF	Flt Permitted	1.00			0.95	0.95	1.00		
Peak-hour factor, PHF	Satd. Flow (perm)	2183			2643	1354	1136		
Adj. Flow (vph) 521 334 2 717 300 310 RTOR Reduction (vph) 138 0 0 0 0 0 22 Lane Group Flow (vph) 717 0 0 719 300 288 Confl. Peds. (#/hr) 341 341 85 65 Confl. Peds. (#/hr) 5 Heavy Vehicles (%) 6% 3% 100% 10% 2% 10% Bus Blockages (#/hr) 24 24 24 24 0 0 0 Furm Type NA Perm NA Perm Perm Protected Phases 2 6 8 8 Actuated Green, G (s) 34.4 34.4 22.6 22.6 Effective Green, G (s) 35.4 35.4 23.6 23.6 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1103 1336 456 382 Vis Ratio Prot c0.33 Vis Ratio Prot c0.33 Vis Ratio Prot c0.33 Vis Ratio Prot c0.34 Vis Ratio Prot c0.35 Vis Ratio Prot c0.35 Vis Ratio Prot c0.35 Vis Ratio Prot c0.35 Vis Ratio Prot c0.36 Vis Ratio Prot c0.36 Vis Ratio O.65 0.54 0.66 0.75 Uniform Delay, d1 12.7 11.7 19.8 20.6 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 Delay (s) 15.7 13.3 23.2 28.8 Level of Service B B B C C Approach Delay (s) 15.7 13.3 26.1 Approach LOS B C C Approach LOS B C C Intersection Summary HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15			0.87	0.87					
RTOR Reduction (vph) 138 0 0 0 0 0 22 Lane Group Flow (vph) 717 0 0 0 719 300 288 Confl. Pekes. (#/hr) 5 Heavy Vehicles (%) 6% 3% 100% 10% 2% 10% Bus Blockages (#/hr) 24 24 24 24 0 0 Turn Type NA Perm NA Perm Perm Protected Phases 2 6 Permitted Phases 6 8 8 Actuated Green, G (s) 34.4 34.4 22.6 22.6 Effective Green, g (s) 35.4 35.4 23.6 23.6 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1103 1336 456 382 W/s Ratio Perm 0.27 0.22 c0.25 W/s Ratio Perm 0.65 0.54 0.66 0.75 Uniform Delay, d1 12.7 11.7 19.8 20.6 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 Delay (s) 15.7 13.3 23.2 28.8 Level of Service B B B C C Approach LOS B B B C Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B Analysis Period (min) 15									
Lane Group Flow (vph)									
Confl. Peds. (#/hr)			-	-		300			
Confl. Bikes (#/hr) 5									
Heavy Vehicles (%) 6% 3% 100% 10% 2% 10% Bus Blockages (#/hr) 24 24 24 24 0 0 0 Turn Type NA Perm NA Perm Perm Perm Perm Protected Phases 2 6 8 8 8 Actuated Green, G (s) 34.4 34.4 22.6 22.6 Effective Green, g (s) 35.4 35.4 23.6 23.6 Actuated group (Ratio Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			5						
Bus Blockages (#/hr)		6%		100%	10%	2%	10%		
Turn Type									
Protected Phases 2 6 8 8 8 Actuated Green, G (s) 34.4 34.4 22.6 22.6 Actuated Green, g (s) 35.4 35.4 23.6 23.6 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Clearance Time (s) 7.0 7.0 6.0 6.0 Actuated g/C Ratio 0.51 3.0 3.0 3.0 3.0 Alearance Time (s) 7.0 7.0 6.0 6.0 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Actuated g/C Ratio 0.51 0.51 0.35 0.30 Alearance Time (s) 7.0 7.0 6.0 6.0 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Actuated g/C Ratio 0.51 0.52 0.50 Actuated Procession Factor 0.02 0.02 0.25 Actuated Procession Factor 0.00 0.00 0.00 Actuated Cycle Length (s) 15.7 13.3 26.1 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Actuated Cycle Length (s) 60.2% ICU Level of Service B		NA		Perm	NA	Perm	Perm		
Permitted Phases 6 8 8 8 Actuated Green, G (s) 34.4 34.4 22.6 22.6 Effective Green, g (s) 35.4 35.4 23.6 23.6 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Actuated g/C Ratio 0.51 0.51 0.34 0.34 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Actuated g/C Ratio 0.033 Vehicle Extension (s) 3.0 0.0 Clearance Time (s) 7.0 Clearanc									
Effective Green, g (s) 35.4 35.4 23.6 23.6 Actuated g/C Ratio 0.51 0.51 0.34 0.34 0.34 0.04 0.02 0.02 0.02 0.02 0.02 0.03 0.0 0.00 0.0				6	-	8	8		
Effective Green, g (s) 35.4 35.4 23.6 23.6 Actuated g/C Ratio 0.51 0.51 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34		34.4			34.4				
Actuated g/C Ratio 0.51 0.51 0.34 0.34 Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0									
Clearance Time (s) 7.0 7.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Jane Grp Cap (vph) 1103 1336 456 382 VIs Ratio Prot 0.033 3.0 3.0 3.0 VIs Ratio Perm 0.27 0.22 0.25 0.25 VIc Ratio 0.65 0.54 0.66 0.75 Iniform Delay, d1 12.7 11.7 19.8 20.6 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 2 Delay (s) 15.7 13.3 23.2 28.8 2 Level of Service B B C C Approach LOS B B C C Intersection Summary Intersection Summary Intersection Capacity Cleangth (s) 17.8 Intersection Capacity Utilization B Intersection Capacity Utilization B Intersection Capacity Utilization B Intersection Capacity Utilization B Intersection Capacity Utilization <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1103 1336 456 382 I/s Ratio Prot c0.33 0.27 0.22 c0.25 I/s Ratio Perm 0.27 0.22 c0.25 I/c Ratio 0.65 0.54 0.66 0.75 Uniform Delay, d1 12.7 11.7 19.8 20.6 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 2 Delay (s) 15.7 13.3 23.2 28.8 2 2.0	Clearance Time (s)								
Lane Grp Cap (vph) 1103 1336 456 382 v/s Ratio Prot 0.33 v/s Ratio Prot 0.33 v/s Ratio Perm 0.27 0.22 c0.25 v/c Ratio 0.65 0.54 0.66 0.75 Uniform Delay, d1 12.7 11.7 19.8 20.6 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 Delay (s) 15.7 13.3 23.2 28.8 Level of Service B B B C C Approach Delay (s) 15.7 13.3 26.1 Approach LOS B B C Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Actualed Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15									
## Ratio Prot									
\(\text{Vs Ratio Perm} \) \(0.27 \) \(0.22 \) \(0.25 \) \(\text{Vc Ratio} \) \(0.65 \) \(0.65 \) \(0.65 \) \(0.66 \) \(0.75 \) \\(0.66 \) \(0.75 \) \\(0.66 \) \(0.75 \) \\(0.66 \) \(0.75 \) \\(0.66 \) \(0.75 \) \\(0.66 \) \(0.75 \) \\(0.66 \) \(0.75 \) \\(0.66 \) \(0.75 \) \\(0.66 \) \(0.75 \) \\(0.66 \) \\(0.75 \) \\(0.66 \) \\(0.76 \) \\(0.66 \) \\(0.76 \) \\(0.70 \) \\(0.70 \) \(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \\(0.70 \) \(0.70 \) \\(0.70 \)					.000		002		
v/c Ratio 0.65 0.54 0.66 0.75 Uniform Delay, d1 12.7 11.7 19.8 20.6 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 Delay (s) 15.7 13.3 23.2 28.8 Level of Service B B C C Approach Delay (s) 15.7 13.3 26.1 Approach LOS B B C Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B	v/s Ratio Perm	30.00			0.27	0.22	c0.25		
Uniform Delay, d1 12.7 11.7 19.8 20.6 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 Delay (s) 15.7 13.3 23.2 28.8 Level of Service B B B C C Approach Delay (s) 15.7 13.3 26.1 Approach LOS B B C Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15	v/c Ratio	0.65							
Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.0 1.6 3.4 8.2 Delay (s) 15.7 13.3 23.2 28.8 Level of Service B B C C Approach Delay (s) 15.7 13.3 26.1 A Approach LOS B B C C Intersection Summary Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Sum of lost time (s) 12.0 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15									
Incremental Delay, d2 3.0 1.6 3.4 8.2 Delay (s) 15.7 13.3 23.2 28.8 Level of Service B B B C C Approach Delay (s) 15.7 13.3 26.1 Approach LOS B B C C Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15									
Delay (s) 15.7 13.3 23.2 28.8 Level of Service B B C C Approach Delay (s) 15.7 13.3 26.1 Approach LOS B B C Approach LOS B B C Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15									
Level of Service B	Delay (s)								
Approach Delay (s) 15.7 Approach LOS 13.3 B C. Approach LOS B B C Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Control Length (s) 12.0 ICU Level of Service B Actuated Cycle Length (s) 60.2% ICU Level of Service B Analysis Period (min) 15	Level of Service								
Approach LOS B B C Intersection Summary HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15	Approach Delay (s)								
Intersection Summary	Approach LOS								
HCM 2000 Control Delay 17.8 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.70 Sum of lost time (s) 12.0 Actuated Cycle Length (s) 60.2% ICU Level of Service B Analysis Period (min) 15	Intersection Summary								
HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15				17.8	Н	CM 2000	Level of Service	e	В
Actuated Cycle Length (s) 70.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15									
Intersection Capacity Utilization 60.2% ICU Level of Service B Analysis Period (min) 15					Sı	um of lost	time (s)		12.0
Analysis Period (min) 15							(-)		
	Analysis Period (min)								

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

	•	→	←	•	\	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
	LUL	41∱		WOIN	SDL W	אושט
Lane Configurations	0		↑ ↑	131		23
Traffic Volume (vph)	0	653	919 919	131	93	23
Future Volume (vph)		653			93	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.95	0.95	0.95	1.00	1.00
Ped Bike Factor			0.98		0.99	
Frt			0.981		0.973	
Flt Protected					0.962	
Satd. Flow (prot)	0	2941	2855	0	1459	0
Flt Permitted					0.962	
Satd. Flow (perm)	0	2941	2855	0	1459	0
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)			37		15	
Link Speed (k/h)		50	50		50	
Link Distance (m)		316.7	191.3		100.8	
Travel Time (s)		22.8	13.8		7.3	
	45	22.0	13.0	45	1.3	15
Confl. Peds. (#/hr)	45					15
Confl. Bikes (#/hr)	0.00	0.00	0.00	26	0.00	0.00
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	0%	4%	4%	0%	0%	39%
Bus Blockages (#/hr)	24	24	24	24	0	0
Adj. Flow (vph)	0	734	1033	147	104	26
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	734	1180	0	130	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)	2011	0.0	0.0	· ugint	3.5	. ugin
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		1.6	1.6		1.6	
		1.0	1.0		1.0	
Two way Left Turn Lane	4.40	4.00	4.00	4.40	4.40	4.40
Headway Factor	1.16	1.23	1.23	1.16	1.16	1.16
Turning Speed (k/h)	24			14	24	14
Number of Detectors	1	2	2		1	
Detector Template	Left	Thru	Thru		Left	
Leading Detector (m)	6.1	30.5	30.5		6.1	
Trailing Detector (m)	0.0	0.0	0.0		0.0	
Detector 1 Position(m)	0.0	0.0	0.0		0.0	
Detector 1 Size(m)	6.1	1.8	1.8		6.1	
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex		CI+Ex	
Detector 1 Channel	OI-LX	JI. LX	31. LX		31. LX	
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	
	0.0	0.0	0.0		0.0	
Detector 1 Queue (s)						
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	
Detector 2 Position(m)		28.7	28.7			
Detector 2 Size(m)		1.8	1.8			
Detector 2 Type		CI+Ex	CI+Ex			
Detector 2 Channel						
Detector 2 Extend (s)		0.0	0.0			
Turn Type		NA	NA		Perm	

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 43

	٠	-	•	•	-	✓	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Protected Phases		2	6				
Permitted Phases	2				8		
Detector Phase	2	2	6		8		
Switch Phase							
Minimum Initial (s)	20.0	20.0	20.0		18.0		
Minimum Split (s)	26.0	26.0	26.0		23.0		
Total Split (s)	55.0	55.0	55.0		25.0		
Total Split (%)	68.8%	68.8%	68.8%		31.3%		
Maximum Green (s)	49.0	49.0	49.0		20.0		
Yellow Time (s)	4.0	4.0	4.0		3.0		
All-Red Time (s)	2.0	2.0	2.0		2.0		
Lost Time Adjust (s)		-1.0	-1.0		-1.0		
Total Lost Time (s)		5.0	5.0		4.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0		3.0		
Recall Mode	C-Max	C-Max	None		None		
Walk Time (s)	7.0	7.0	7.0		7.0		
Flash Dont Walk (s)	13.0	13.0	13.0		11.0		
Pedestrian Calls (#/hr)	100	100	14		5		
Act Effct Green (s)		57.6	57.6		19.0		
Actuated g/C Ratio		0.72	0.72		0.24		
v/c Ratio		0.35	0.57		0.36		
Control Delay		6.3	8.4		25.9		
Queue Delay		0.0	0.0		0.0		
Total Delay		6.3	8.4		25.9		
LOS		Α	Α		С		
Approach Delay		6.3	8.4		25.9		
Approach LOS		Α	Α		С		
Intersection Summary							
Area Type:	CBD						
Cycle Length: 80							
Actuated Cycle Length:	: 80						
Offset: 1 (1%), Referen	ced to phase 2:	EBTL, St	art of Gree	en			
Natural Cycle: 60							
Control Type: Actuated	-Coordinated						
Maximum v/c Ratio: 0.5	57						
Intersection Signal Dela	ay: 8.8			In	tersection	LOS: A	
Intersection Capacity U	Itilization 55.8%			IC	CU Level	of Service B	
Analysis Period (min) 1	5						
Splits and Phases: 2	081: King St &	Joe Shus	ter Way				
A	-						

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 2081: King St & Joe Shuster Way

Synchro 11 Report Page 44

2081: King St & Joe Shuster Way

09/30/2021

	-	_	-
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	734	1180	130
v/c Ratio	0.35	0.57	0.36
Control Delay	6.3	8.4	25.9
Queue Delay	0.0	0.0	0.0
Total Delay	6.3	8.4	25.9
Queue Length 50th (m)	23.9	47.3	14.5
Queue Length 95th (m)	32.7	63.8	29.1
Internal Link Dist (m)	292.7	167.3	76.8
Turn Bay Length (m)			
Base Capacity (vph)	2117	2065	394
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.35	0.57	0.33
Intersection Summary			

HCM Signalized Intersection Capacity Analysis 2081: King St & Joe Shuster Way

09/30/2021

	•	-	←	•	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		414	∱ 1>		¥		
Traffic Volume (vph)	0	653	919	131	93	23	
Future Volume (vph)	0	653	919	131	93	23	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0	5.0		4.0		
Lane Util. Factor		0.95	0.95		1.00		
Frpb, ped/bikes		1.00	0.98		0.99		
Flpb, ped/bikes		1.00	1.00		1.00		
Frt		1.00	0.98		0.97		
Flt Protected		1.00	1.00		0.96		
Satd. Flow (prot)		2941	2856		1458		
FIt Permitted		1.00	1.00		0.96		
Satd. Flow (perm)		2941	2856		1458		
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	
Adj. Flow (vph)	0	734	1033	147	104	26	
RTOR Reduction (vph)	0	0	11	0	12	0	
Lane Group Flow (vph)	0	734	1169	0	118	0	
Confl. Peds. (#/hr)	45			45		15	
Confl. Bikes (#/hr)				26			
Heavy Vehicles (%)	0%	4%	4%	0%	0%	39%	
Bus Blockages (#/hr)	24	24	24	24	0	0	
Turn Type		NA	NA		Perm		
Protected Phases		2	6				
Permitted Phases	2				8		
Actuated Green, G (s)		54.6	54.6		14.4		
Effective Green, q (s)		55.6	55.6		15.4		
Actuated g/C Ratio		0.70	0.70		0.19		
Clearance Time (s)		6.0	6.0		5.0		
Vehicle Extension (s)		3.0	3.0		3.0		
Lane Grp Cap (vph)		2043	1984		280		
v/s Ratio Prot		0.25	c0.41				
v/s Ratio Perm					c0.08		
v/c Ratio		0.36	0.59		0.42		
Uniform Delay, d1		5.0	6.3		28.4		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		0.5	0.5		1.0		
Delay (s)		5.5	6.8		29.4		
Level of Service		Α	A		С		
Approach Delay (s)		5.5	6.8		29.4		
Approach LOS		A	A		C		
Intersection Summary							
HCM 2000 Control Delay			7.7	Н	CM 2000	Level of Service	A
HCM 2000 Volume to Capaci	tv ratio		0.56		2.31 2000		
Actuated Cycle Length (s)	.,		80.0	Sı	um of lost	time (s)	10.0
Intersection Capacity Utilization	on		55.8%		U Level o		В
Analysis Period (min)			15				
c Critical Lane Group							

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	•	†	1	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	A	7	7	<u> </u>
Traffic Volume (vph)	56	227	741	21	86	849
Future Volume (vph)	56	227	741	21	86	849
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.0	3.0	3.5	3.0	3.0	3.5
	30.0	0.0	3.3	15.0	30.0	3.3
Storage Length (m)	30.0	1		15.0	30.0	
Storage Lanes	2.5	- 1		- 1	2.5	
Taper Length (m)		4.00	4.00	4.00		4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.86		0.94		
Frt		0.850		0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1685	1304	1842	1507	1478	1842
Flt Permitted	0.950				0.152	
Satd. Flow (perm)	1685	1122	1842	1413	236	1842
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		90		7		
Link Speed (k/h)	30		30			30
Link Distance (m)	148.7		265.9			191.3
Travel Time (s)	17.8		31.9			23.0
Confl. Peds. (#/hr)	17.0		31.3	28	28	20.0
		117		3	20	
Confl. Bikes (#/hr)	0.00		0.00		0.00	0.89
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	
Heavy Vehicles (%)	0%	11%	2%	0%	14%	2%
Bus Blockages (#/hr)	0	10	0	0	0	0
Adj. Flow (vph)	63	255	833	24	97	954
Shared Lane Traffic (%)						
Lane Group Flow (vph)	63	255	833	24	97	954
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.0		3.0	_		3.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	1.6		1.6			1.6
Two way Left Turn Lane	1.0		1.0			1.0
Headway Factor	1.09	1.15	1.01	1.09	1.09	1.01
	1.09	1.15	1.01	1.09	1.09	1.01
Turning Speed (k/h)			^			^
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (m)	6.1	6.1	30.5	6.1	6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	6.1	1.8	6.1	6.1	1.8
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0		0.0	0.0	
Detector 2 Position(m)			28.7			28.7
Detector 2 Size(m)			1.8			1.8

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 47

Lanes, Volumes, Timings 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	•	†	1	>	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Detector 2 Type			CI+Ex			CI+Ex	
Detector 2 Channel			OI - EX			O. LA	
Detector 2 Extend (s)			0.0			0.0	
Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA	
Protected Phases		1	2		1	6	
Permitted Phases	8	8		2	6		
Detector Phase	8	1	2	2	1	6	
Switch Phase							
Minimum Initial (s)	21.0	6.0	27.0	27.0	6.0	27.0	
Minimum Split (s)	26.0	10.0	34.0	34.0	10.0	34.0	
Total Split (s)	26.0	10.0	44.0	44.0	10.0	54.0	
Total Split (%)	32.5%	12.5%	55.0%	55.0%	12.5%	67.5%	
Maximum Green (s)	21.0	6.0	37.0	37.0	6.0	47.0	
Yellow Time (s)	3.0	3.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	2.0	1.0	3.0	3.0	1.0	3.0	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	3.0	6.0	6.0	3.0	6.0	
Lead/Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	C-Max	C-Max	None	C-Max	
Walk Time (s)	7.0		7.0	7.0		0.0	
Flash Dont Walk (s)	14.0		20.0	20.0		0.0	
Pedestrian Calls (#/hr)	0	20.0	9	9	24.4	0	
Act Effct Green (s)	22.0	22.3	46.9	46.9	61.4	60.8	
Actuated g/C Ratio	0.28	0.28	0.59	0.59	0.77	0.76	
v/c Ratio	0.14	0.64	0.77	0.03	0.31	0.68	
Control Delay	22.9	20.9	23.4	9.1	7.5	13.9	
Queue Delay	0.0 22.9	0.0 20.9	0.0 23.4	0.0 9.1	0.0 7.5	0.1 14.0	
Total Delay LOS	22.9 C	20.9 C	23.4 C	9.1 A	7.5 A	14.0 B	
	21.3	C	23.0	А	А	13.4	
Approach Delay Approach LOS	21.3 C		23.0 C			13.4 B	
Approach LOS	U		U			В	
Intersection Summary							
Area Type:	Other						
Cycle Length: 80							
Actuated Cycle Length: 80							
Offset: 31 (39%), Reference	ed to phase	2:NBT a	nd 6:SBT	L, Start of	f 1st Gree	en	
Natural Cycle: 80							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.77							
Intersection Signal Delay: 1					ntersectio		
Intersection Capacity Utiliza	ation 73.2%			IC	CU Level	of Service	D:
Analysis Period (min) 15							
Splits and Phases: 2134	: British Col	ombia Ro	l/Dufferin	St & Sasl	katchewa	n Rd	
Ø1	(D)						
10 - 102	(K)						

2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

	•	•	†	/	/	. ↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	63	255	833	24	97	954
v/c Ratio	0.14	0.64	0.77	0.03	0.31	0.68
Control Delay	22.9	20.9	23.4	9.1	7.5	13.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.1
Total Delay	22.9	20.9	23.4	9.1	7.5	14.0
Queue Length 50th (m)	7.2	16.4	115.6	1.3	5.1	108.9
Queue Length 95th (m)	16.0	34.5	#188.3	4.9	10.2	#192.8
Internal Link Dist (m)	124.7		241.9			167.3
Turn Bay Length (m)	30.0			15.0	30.0	
Base Capacity (vph)	463	397	1078	830	313	1400
Starvation Cap Reductn	0	0	0	0	0	50
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.14	0.64	0.77	0.03	0.31	0.71

Intersection Summary # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2134: British Colombia Rd/Dufferin St & Saskatchewan Rd

09/30/2021

are Configurations		•	•	†	/	-	↓	
ane Configurations in a fraffic Volume (vph) 56 227 741 21 86 849 victure Volume (vph) 56 227 741 21 86 849 victure Volume (vph) 56 227 741 21 86 849 victure Volume (vph) 56 227 741 21 86 849 victure Volume (vph) 56 227 741 21 86 849 victure Volume (vph) 1900 1900 1900 1900 1900 1900 300 300 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Traffic Volume (vph)								
Figure Volume (vph)								
Deal Flow (vphpl) 1900 1								
Content								
Stall Lost time (s)	Lane Width							
Cane Util. Factor								
Producted Phases 1.00 0.89 1.00 1.	\ /							
The content of the								
Said Flow (prot) 1685 1162 1842 1413 1478 1842 1416 1478 1842 1417 1478 1842 1418 1478 1842 1418	Frt							
Said. Flow (prot)	Flt Protected			1.00				
Cit Permitted	Satd. Flow (prot)	1685	1162	1842				
Peak-hour factor, PHF 0.89 0.99 0.90	Flt Permitted		1.00	1.00	1.00	0.15	1.00	
Peak-hour factor, PHF 0.89 0.99 0.90	Satd. Flow (perm)							
Adj. Flow (vph) 63 255 833 24 97 954 ATTOR Reduction (vph) 0 65 0 3 0 0 ane Group Flow (vph) 63 190 833 21 97 954 Confl. Peds. (#/hr) 28 28 Confl. Bikes (#/hr) 117 3 deavy Vehicles (%) 0% 11% 2% 0% 14% 2% Bus Blockages (#/hr) 0 10 0 0 0 0 Turn Type Perm pm+ov NA Perm pm+pt NA Perotected Phases 8 8 2 6 Permitted Phases 8 8 2 6 Effective Green, g (s) 13.6 22.1 44.9 44.9 56.4 56.4 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Pelicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 286 321 1033 793 298 1298 Asia Permit Protected Phases 8 32 10.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 286 321 1033 793 298 1298 Asia Permit Protected Phases 8 32 10.0 3 0.0 3.0 3.0 3.0 ane Grp Cap (vph) 286 321 1033 793 298 1298 Asia Permit Protected Phase 9.8 10.0 3 0.3 3.0 3.0 Ane Group Cap (vph) 286 321 1033 793 298 1298 Asia Permit Protected	Peak-hour factor, PHF							
ATOR Reduction (vph) 0 65 0 3 0 0 0 ane Group Flow (vph) 63 190 833 21 97 954 confl. Peds. (#hrr) 28 28 28 confl. Peds. (#hrr) 3 3 deavy Vehicles (%) 0% 11% 2% 0% 14% 2% 808 Blockages (#hrr) 0 10 0 0 0 0 0 0 confl. Peds. (#hrr) 170 117 3 3 deavy Vehicles (%) 0% 11% 2% 0% 14% 2% 808 Blockages (#hrr) 0 10 0 0 0 0 0 0 confl. Peds. (#hrr) 1 2 1 6 6 deavy Vehicles (%) 12.6 20.1 43.9 43.9 55.4 55.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 56.4 deavy Vehicles (%) 13.6 22.1 44.9 44.9 56.4 56.4 56.4 deavy Vehicles (%) 13.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0								
Ame Group Flow (vph) 63 190 833 21 97 954 Confl. Bikes (#/hr) 28 28 28 Confl. Bikes (#/hr) 117 3 3 Cleavy Vehicles (%) 0% 11% 2% 0% 14% 2% 0% 14% 2% 0% 14% 2% 0% 14% 2% 0% 14% 2% 0% 14% 2% 0% 14% 2% 0% 0% 14% 2% 0% 0% 14% 2% 0% 0% 14% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	, (, ,							
Confl. Peds. (#/hr)		_		-				
Confl. Bikes (#/hr)	Confl. Peds. (#/hr)	- 30						
Heavy Vehicles (%)			117		3			
Sus Blockages (#/hr)	Heavy Vehicles (%)	0%	11%	2%		14%	2%	
Turn Type	Bus Blockages (#/hr)	0	10	0	0	0	0	
Protected Phases 8 8 8 2 6 6 Actuated Green, G (s) 12.6 20.1 43.9 43.9 55.4 55.4 Actuated Green, g (s) 13.6 22.1 44.9 44.9 56.4 56.4 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 5.0 4.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	Turn Type	Perm	pm+ov	NA	Perm	pm+pt	NA	
Actuated Green, G (s) 12.6 20.1 43.9 43.9 55.4 55.4 Actuated Green, g (s) 13.6 22.1 44.9 44.9 56.4 56.4 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Actuated g/C Ratio 0.17 0.28 0.50 0.56 0.56 0.70 0.70 Actuated g/C Ratio 0.17 0.28 0.50 0.56 0.56 0.70 0.70 Actuated g/C Ratio 0.10 0.01 0.01 0.01 0.02 Actuated Bream 0.04 0.10 0.01 0.19 Actuated Bream 0.04 0.10 0.01 0.19 Actuated Bream 0.04 0.10 0.01 0.00 0.03 0.03 0.052 Actuated Bream 0.04 0.10 0.01 0.00 0.03 0.03 0.052 Actuated Bream 0.04 0.10 0.01 0.00 0.03 0.03 0.052 Actuated Bream 0.04 0.10 0.01 0.00 0.01 0.09 Actuated Bream 0.04 0.10 0.01 0.00 0.00 0.00 0 0 0 0 0 0 0	Protected Phases							
Effective Green, g (s) 13.6 22.1 44.9 44.9 56.4 56.4 Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Delarance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0 Actuated g/C Ratio 0.13 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Anne Grp Cap (vph) 286 321 1033 793 298 1298 As Ratio Prot 0.006 0.45 0.03 0.52 As Ratio Prot 0.006 0.45 0.03 0.52 As Ratio Prot 0.00 0.01 0.19 As Ratio Prot 0.04 0.10 0.01 0.19 As Ratio Prot 0.05 0.59 0.81 0.03 0.33 0.73 Annerm Delay, d1 28.6 25.0 14.1 7.8 9.4 7.2 Arogression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Arogression Factor 1.00 1.00	Permitted Phases	8	8		2	6		
Effective Green, g (s) 13.6 22.1 44.9 44.9 56.4 56.4 cutuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 0.00 0.00 0.00 0.00 0.00 0.0	Actuated Green, G (s)	12.6	20.1	43.9	43.9	55.4	55.4	
Actuated g/C Ratio 0.17 0.28 0.56 0.56 0.70 0.70 Dearance Time (s) 5.0 4.0 7.0 7.0 4.0 7.0		13.6	22.1	44.9	44.9	56.4	56.4	
//ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Actuated q/C Ratio	0.17	0.28	0.56	0.56	0.70	0.70	
Ane Grp Cap (vph) 286 321 1033 793 298 1298 //s Ratio Prot 0.0.06 c0.45 0.03 c0.52 //s Ratio Perm 0.04 0.10 0.01 0.19 //c Ratio Perm 0.04 0.10 0.01 0.19 //c Ratio Perm 0.04 0.10 0.01 0.19 //c Ratio 0.22 0.59 0.81 0.03 0.33 0.73 //c Ratio Perm 0.04 1.00 1.00 1.00 0.00 0.00 0.00 0.00	Clearance Time (s)	5.0	4.0	7.0	7.0	4.0	7.0	
Anne Grp Cap (vph)	Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
S Ratio Prot	Lane Grp Cap (vph)	286	321	1033	793	298	1298	
S Ratio Perm 0.04 0.10 0.01 0.19 0.19 0.19 0.16 0.22 0.59 0.81 0.03 0.33 0.73 0.35 0.73 0.35 0.73 0.35 0.74 0.35 0.35 0.74 0.35 0.35 0.75 0.35 0.35 0.75 0.35 0.35 0.75 0.35 0.35 0.75 0.35 0.35 0.35 0.75 0.35	v/s Ratio Prot		c0.06	c0.45		0.03	c0.52	
Refatio 0.22 0.59 0.81 0.03 0.33 0.73 0.73 0.75 0.75 0.81 0.03 0.33 0.73 0.75	v/s Ratio Perm	0.04			0.01			
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	v/c Ratio		0.59	0.81	0.03	0.33	0.73	
Delay (d2	Uniform Delay, d1	28.6	25.0	14.1	7.8	9.4	7.2	
Comparison Com	Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Approach Delay (s) 28.2 20.4 10.9	Incremental Delay, d2	0.4	2.9	6.7	0.1	0.6	3.7	
Approach Delay (s)	Delay (s)	29.0	28.0	20.8	7.9	10.0	11.0	
Approach LOS	Level of Service		С	С	Α	Α	В	
New York	Approach Delay (s)	28.2		20.4			10.9	
HCM 2000 Control Delay 17.0 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.77 Volume to Capacity (s) 80.0 Sum of lost time (s) 14.0 Nactuated Cycle Length (s) 73.2% ICU Level of Service D Inallysis Period (min) 15 ICU Level of Service D	Approach LOS	С		С			В	
HCM 2000 Control Delay 17.0 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.77 Cutuated Cycle Length (s) 80.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 73.2% ICU Level of Service D Inallysis Period (min) 15	Intersection Summary							
HCM 2000 Volume to Capacity ratio 0.77 Actuated Cycle Length (s) 80.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 73.2% ICU Level of Service D Analysis Period (min) 15				17.0	Н	CM 2000	Level of Servi	ce B
Actuated Cycle Length (s) 80.0 Sum of lost time (s) 14.0 ntersection Capacity Utilization 73.2% ICU Level of Service D Analysis Period (min) 15		acity ratio						
ntersection Capacity Utilization 73.2% ICU Level of Service D Analysis Period (min) 15					S	um of lost	t time (s)	14.0
Analysis Period (min) 15		ation						
	Analysis Period (min)							
, Chilical Lane Group	c Critical Lane Group							

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

	•	•	†	/	>	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		f)			4	
Traffic Volume (vph)	30	4	174	15	0	117	
Future Volume (vph)	30	4	174	15	0	117	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt	0.985		0.989				
Flt Protected	0.957						
Satd. Flow (prot)	1736	0	1822	0	0	1842	
Flt Permitted	0.957						
Satd. Flow (perm)	1736	0	1822	0	0	1842	
Link Speed (k/h)	50		50			50	
Link Distance (m)	78.7		80.2			351.8	
Travel Time (s)	5.7		5.8			25.3	
Confl. Peds. (#/hr)	5	11		882	882		
Confl. Bikes (#/hr)		4		14			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	33	4	189	16	0	127	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	37	0	205	0	0	127	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	3.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	1.6		1.6			1.6	
Two way Left Turn Lane							
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	
Turning Speed (k/h)	24	14		14	24		
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	tion 26.4%			IC	U Level	of Service	e A
Analysis Period (min) 15							

	€	•	†	/	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1 >			ર્ન
Traffic Volume (veh/h)	30	4	174	15	0	117
Future Volume (Veh/h)	30	4	174	15	0	117
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	33	4	189	16	0	127
Pedestrians	882		5			11
Lane Width (m)	3.5		3.5			3.5
Walking Speed (m/s)	1.2		1.2			1.2
Percent Blockage	71		0			1
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1211	1090			1087	
vC1, stage 1 conf vol		.000				
vC2, stage 2 conf vol						
vCu, unblocked vol	1211	1090			1087	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0	0.2				
tF (s)	3.5	3.3			2.2	
p0 queue free %	42	95			100	
cM capacity (veh/h)	57	74			183	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	37	205	127			
Volume Left	33 4	0 16	0			
Volume Right cSH	59	1700	183			
Volume to Capacity	0.63	0.12	0.00			
Queue Length 95th (m)	19.8	0.0	0.0			
Control Delay (s)	139.2	0.0	0.0			
Lane LOS	F					
Approach Delay (s)	139.2	0.0	0.0			
Approach LOS	F					
Intersection Summary						
Average Delay			14.0			
Intersection Capacity Utiliz	zation		26.4%	IC	U Level o	f Service
Analysis Period (min)			15			
. ,						

HCM Unsignalized Intersection Capacity Analysis 9004: Jefferson Ave & Site B Driveway

9006: Atlantic Ave & Site B Driveway

α	10	1	10	α	d
N9	1.1	u	1/	w	

Lane Group EBL EBR NBL NBT SBT SBR Lane Configurations ↑ ↑
Traffic Volume (vph) 39 11 20 107 162 14 Future Volume (vph) 39 11 20 107 162 14 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900
Traffic Volume (vph) 39 11 20 107 162 14 Future Volume (vph) 39 11 20 107 162 14 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900
Future Volume (vph) 39 11 20 107 162 14 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900
Lane Util Factor 1 00 1 00 1 00 1 00 1 00
Ped Bike Factor
Frt 0.970 0.989
Flt Protected 0.963 0.992
Satd. Flow (prot) 1721 0 0 1827 1822 0
Flt Permitted 0.963 0.992
Satd. Flow (perm) 1721 0 0 1827 1822 0
Link Speed (k/h) 50 50 50
Link Distance (m) 78.7 34.0 217.5
Travel Time (s) 5.7 2.4 15.7
Confl. Peds. (#/hr) 820 223 223
Confl. Bikes (#/hr) 1 13
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92
Adj. Flow (vph) 42 12 22 116 176 15
Shared Lane Traffic (%)
Lane Group Flow (vph) 54 0 0 138 191 0
Enter Blocked Intersection No No No No No No
Lane Alignment Left Right Left Left Right
Median Width(m) 3.5 0.0 0.0
Link Offset(m) 0.0 0.0 0.0
Crosswalk Width(m) 1.6 1.6 1.6
Two way Left Turn Lane
Headway Factor 1.01 1.01 1.01 1.01 1.01
Turning Speed (k/h) 24 14 24 14
Sign Control Stop Free Free
Intersection Summary
Area Type: Other

Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 42.7%
Analysis Period (min) 15

HCM Unsignalized Intersection Capacity Analysis 9006: Atlantic Ave & Site B Driveway

09/30/2021

	۶	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	£	
Traffic Volume (veh/h)	39	11	20	107	162	14
Future Volume (Veh/h)	39	11	20	107	162	14
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	42	12	22	116	176	15
Pedestrians	223			820		
Lane Width (m)	3.5			3.5		
Walking Speed (m/s)	1.2			1.2		
Percent Blockage	18			66		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				77		
pX, platoon unblocked						
vC, conflicting volume	566	1226	414			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	566	1226	414			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	89	80	98			
cM capacity (veh/h)	388	60	938			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	54	138	191			
Volume Left	42	22	0			
Volume Right	12	0	15			
cSH	175	938	1700			
Volume to Capacity	0.31	0.02	0.11			
Queue Length 95th (m)	9.4	0.5	0.0			
Control Delay (s)	34.5	1.6	0.0			
Lane LOS	D	Α				
Approach Delay (s)	34.5	1.6	0.0			
Approach LOS	D					
Intersection Summary						
Average Delay			5.4			
Intersection Capacity Utiliza	ation		42.7%	IC	U Level o	f Service
Analysis Period (min)			15			
,						

09/30/2021

	•	-	←	•	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ની	1		W		
Traffic Volume (vph)	64	200	75	15	32	3	
Future Volume (vph)	64	200	75	15	32	3	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt			0.978		0.989		
Flt Protected		0.988			0.956		
Satd. Flow (prot)	0	1820	1802	0	1742	0	
Flt Permitted		0.988			0.956		
Satd. Flow (perm)	0	1820	1802	0	1742	0	
Link Speed (k/h)		40	40		50		
Link Distance (m)		198.4	579.0		130.0		
Travel Time (s)		17.9	52.1		9.4		
Confl. Peds. (#/hr)	727			727			
Confl. Bikes (#/hr)				24			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	70	217	82	16	35	3	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	287	98	0	38	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Left	Left	Right	Left	Right	
Median Width(m)		3.5	3.5		3.5	•	
Link Offset(m)		0.0	0.0		0.0		
Crosswalk Width(m)		1.6	1.6		1.6		
Two way Left Turn Lane							
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	
Turning Speed (k/h)	24			14	24	14	
Sign Control		Free	Free		Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 30.7%			IC	CU Level	of Service	A A
Analysis Period (min) 15							

HCM Unsignalized Intersection Capacity Analysis 9007: New Liberty St & Hanna Ave

		-	_	_	*	*
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	î,		Y	
Traffic Volume (veh/h)	64	200	75	15	32	3
Future Volume (Veh/h)	64	200	75	15	32	3
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	70	217	82	16	35	3
Pedestrians					727	
Lane Width (m)					3.5	
Walking Speed (m/s)					1.2	
Percent Blockage					59	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		198				
pX, platoon unblocked						
vC, conflicting volume	825				1174	817
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	825				1174	817
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	79				49	98
cM capacity (veh/h)	331				69	155
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	287	98	38			
Volume Left	70	0	35			
Volume Right	0	16	3			
cSH	331	1700	72			
Volume to Capacity	0.21	0.06	0.53			
Queue Length 95th (m)	6.0	0.0	16.8			
Control Delay (s)	8.0	0.0	101.3			
1 100			-			

Synchro 11 Report

Page 57

Lane LOS Approach Delay (s) Approach LOS

Intersection Summary
Average Delay
Intersection Capacity Utilization
Analysis Period (min)

8.0

0.0 101.3

14.5 30.7%

ICU Level of Service

Α

09/30/2021

	۶	-	•	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	î,		¥	
Traffic Volume (vph)	161	135	102	43	44	160
Future Volume (vph)	161	135	102	43	44	160
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt			0.960		0.894	
Flt Protected		0.974			0.989	
Satd. Flow (prot)	0	1794	1669	0	1629	0
Flt Permitted		0.974			0.989	
Satd. Flow (perm)	0	1794	1669	0	1629	0
Link Speed (k/h)		40	40		50	
Link Distance (m)		121.2	87.6		80.2	
Travel Time (s)		10.9	7.9		5.8	
Confl. Peds. (#/hr)	498			498		
Confl. Bikes (#/hr)				5		62
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Bus Blockages (#/hr)	0	0	14	14	0	0
Adj. Flow (vph)	179	150	113	48	49	178
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	329	161	0	227	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(m)		0.0	0.0	J 1	3.5	
Link Offset(m)		0.0	0.0		0.0	
Crosswalk Width(m)		1.6	1.6		1.6	
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.09	1.01	1.01	1.01
Turning Speed (k/h)	24			14	24	14
Sign Control		Stop	Stop		Stop	
ŭ					P	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 51.6%			IC	CU Level o	of Service A
Analysis Period (min) 15						

	•	-	-	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1>		Y	
Sign Control		Stop	Stop		Stop	
Traffic Volume (vph)	161	135	102	43	44	160
Future Volume (vph)	161	135	102	43	44	160
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	179	150	113	48	49	178
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total (vph)	329	161	227			
Volume Left (vph)	179	0	49			
Volume Right (vph)	0	48	178			
Hadj (s)	0.14	-0.14	-0.39			
Departure Headway (s)	4.8	4.7	4.7			
Degree Utilization, x	0.44	0.21	0.30			
Capacity (veh/h)	713	710	711			
Control Delay (s)	11.6	9.0	9.6			
Approach Delay (s)	11.6	9.0	9.6			
Approach LOS	В	Α	Α			
Intersection Summary						
Delay			10.4			
Level of Service			В			
Intersection Capacity Utiliz	ation		51.6%	IC	U Level of	Service
Analysis Period (min)			15			

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 59

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

HCM Unsignalized Intersection Capacity Analysis 9022: New Liberty St & Jefferson Ave

Lane Group EBL EBT WBT WBR SBL SBR Lane Configurations ↓
Lane Configurations Image: Configuration of the property of the proper
Traffic Volume (vph) 19 159 42 35 104 103 Future Volume (vph) 19 159 42 35 104 103 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Ped Bike Factor 0.93 0.66 0.60 Frt 0.939 0.933
Future Volume (vph) 19 159 42 35 104 103 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Ped Bike Factor 0.93 0.66 0.60 0.60 Frt 0.939 0.933 0.933
Ideal Flow (vphpl) 1900
Lane Util. Factor 1.00
Ped Bike Factor 0.93 0.66 0.60 Frt 0.939 0.933
Frt 0.939 0.933

Satd. Flow (prot) 0 1730 1141 0 1430 0
Fit Permitted 0.971 0.975
Satd, Flow (perm) 0 1571 1141 0 1007 0
Right Turn on Red Yes Yes
9
Link Speed (k/h) 40 40 50
Link Distance (m) 87.6 198.4 42.4
Travel Time (s) 7.9 17.9 3.1
Confl. Peds. (#/hr) 1226 1226 671 200
Confl. Bikes (#/hr) 19 5
Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90
Bus Blockages (#/hr) 0 14 0 0 0
Adj. Flow (vph) 21 177 47 39 116 114
Shared Lane Traffic (%)
Lane Group Flow (vph) 0 198 86 0 230 0
Enter Blocked Intersection No No No No No No
Lane Alignment Left Left Right Left Right
Median Width(m) 0.0 0.0 3.5
Link Offset(m) 0.0 0.0 0.0
Crosswalk Width(m) 1.6 1.6 1.6
Two way Left Turn Lane
Headway Factor 1.01 1.09 1.01 1.01 1.01 1.01
Turning Speed (k/h) 24 14 24 14
Number of Detectors 1 2 2 1
Detector Template Left Thru Thru Left
Leading Detector (m) 6.1 30.5 30.5 6.1
3 ()
Detector 1 Position(m) 0.0 0.0 0.0 0.0
Detector 1 Size(m) 6.1 1.8 1.8 6.1
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex
Detector 1 Channel
Detector 1 Extend (s) 0.0 0.0 0.0 0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0
Detector 2 Position(m) 28.7 28.7
Detector 2 Size(m) 1.8 1.8
Detector 2 Type CI+Ex CI+Ex
Detector 2 Channel
Detector 2 Extend (s) 0.0 0.0
Turn Type Perm NA NA Perm
Protected Phases 2 6

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improve	ments
HDR Corporation	

Synchro 11 Report Page 61

	•	-	←	•	\	4		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		
Permitted Phases	2				4			
Detector Phase	2	2	6		4			
Switch Phase								
Minimum Initial (s)	7.0	7.0	7.0		7.0			
Minimum Split (s)	24.0	24.0	24.0		24.0			
Total Split (s)	24.0	24.0	24.0		26.0			
Total Split (%)	48.0%	48.0%	48.0%		52.0%			
Maximum Green (s)	18.0	18.0	18.0		20.0			
Yellow Time (s)	4.0	4.0	4.0		4.0			
All-Red Time (s)	2.0	2.0	2.0		2.0			
Lost Time Adjust (s)		-1.0	-1.0		-1.0			
Total Lost Time (s)		5.0	5.0		5.0			
Lead/Lag								
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0	3.0	3.0		3.0			
Recall Mode	C-Max	C-Max	C-Max		None			
Walk Time (s)	7.0	7.0	7.0		7.0			
Flash Dont Walk (s)	11.0	11.0	11.0		11.0			
Pedestrian Calls (#/hr)	100	100	100		100			
Act Effct Green (s)		23.1	23.1		16.9			
Actuated g/C Ratio		0.46	0.46		0.34			
v/c Ratio		0.27	0.16		0.68			
Control Delay		11.2	7.3		24.0			
Queue Delay		0.0	0.0		0.0			
Total Delay		11.2	7.3		24.0			
LOS		В	Α		С			
Approach Delay		11.2	7.3		24.0			
Approach LOS		В	Α		С			
Intersection Summary								
Area Type:	Other							
Cycle Length: 50								
Actuated Cycle Length: 50								
Offset: 0 (0%), Referenced	d to phase 2	EBTL an	d 6:WBT,	Start of G	reen			
Natural Cycle: 50								
Control Type: Actuated-Co	oordinated							
Maximum v/c Ratio: 0.68								
Intersection Signal Delay:					tersection			
Intersection Capacity Utiliz	zation 40.4%			IC	U Level c	of Service A		
Analysis Period (min) 15								
Splits and Phases: 9023	3: New Liber	ty St & At	lantic Ave					
→ø2 (R)					Ø4			
24 s					26 s			
Ø6 (R)								
24 s								

9023: New Liberty St & Atlantic Ave

09/30/2021

	-	_	-
Lane Group	EBT	WBT	SBL
Lane Group Flow (vph)	198	86	230
v/c Ratio	0.27	0.16	0.68
Control Delay	11.2	7.3	24.0
Queue Delay	0.0	0.0	0.0
Total Delay	11.2	7.3	24.0
Queue Length 50th (m)	11.0	2.4	15.8
Queue Length 95th (m)	24.3	9.5	32.0
Internal Link Dist (m)	63.6	174.4	18.4
Turn Bay Length (m)			
Base Capacity (vph)	726	548	422
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.27	0.16	0.55
Intersection Summary			

HCM Signalized Intersection Capacity Analysis 9023: New Liberty St & Atlantic Ave

09/30/2021

	•	-	•	•	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	1		W		
Traffic Volume (vph)	19	159	42	35	104	103	
Future Volume (vph)	19	159	42	35	104	103	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.0	5.0		5.0		
Lane Util. Factor		1.00	1.00		1.00		
Frpb, ped/bikes		1.00	0.66		0.85		
Flpb, ped/bikes		0.93	1.00		0.70		
Frt		1.00	0.94		0.93		
Flt Protected		0.99	1.00		0.98		
Satd. Flow (prot)		1609	1141		1007		
Flt Permitted		0.97	1.00		0.98		
Satd. Flow (perm)		1570	1141		1007		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	21	177	47	39	116	114	
RTOR Reduction (vph)	0	0	21	0	0	0	
Lane Group Flow (vph)	0	198	65	0	230	0	
Confl. Peds. (#/hr)	1226	100	00	1226	671	200	
Confl. Bikes (#/hr)	1220			19	011	5	
Bus Blockages (#/hr)	0	14	0	0	0	0	
Turn Type	Perm	NA	NA		Perm		
Protected Phases	I CIIII	2	6		1 Cilli		
Permitted Phases	2	2	U		4		
Actuated Green, G (s)		22.1	22.1		15.9		
Effective Green, g (s)		23.1	23.1		16.9		
Actuated g/C Ratio		0.46	0.46		0.34		
Clearance Time (s)		6.0	6.0		6.0		
Vehicle Extension (s)		3.0	3.0		3.0		
Lane Grp Cap (vph)		725	527		340		
v/s Ratio Prot		123	0.06		J 4 0		
v/s Ratio Perm		c0.13	0.00		c0.23		
v/c Ratio		0.27	0.12		0.68		
Uniform Delay, d1		8.3	7.7		14.2		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		0.9	0.5		5.3		
Delay (s)		9.2	8.2		19.5		
Level of Service		3.2 A	Α.2		13.3 B		
Approach Delay (s)		9.2	8.2		19.5		
Approach LOS		A	Α		В		
Intersection Summary							
HCM 2000 Control Delay			13.6	Н	CM 2000	Level of Service	. E
HCM 2000 Control Delay	city ratio		0.45	П	JIVI 2000	LEVEL OF DELVICE	
Actuated Cycle Length (s)	orly ratio		50.0	Q.	um of lost	time (s)	11.0
Intersection Capacity Utiliza	tion		40.4%		U Level c		11.0
Analysis Period (min)	iuon		15	10	O LOVOI C	A COLVICE	,
c Critical Lane Group			13				
C Official Latte Group							

Lanes, Volumes, Timings 9024: Dufferin St & New Liberty St

09/30/2021

	1	•	†	1	-	. ↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	1	HUIN	ኘ	<u> </u>
Traffic Volume (vph)	187	84	828	167	28	768
Future Volume (vph)	187	84	828	167	28	768
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0	0.0	1300	0.0	0.0	1300
Storage Lanes	1	1		0.0	1	
Taper Length (m)	2.5			U	2.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.61	0.99	1.00	1.00	1.00
Frt		0.850	0.99			
Fit Protected	0.950	0.000	0.977		0.950	
	1750	1566	1773	0	1750	1842
Satd. Flow (prot) Flt Permitted	0.950	1000	1773	0	0.116	1042
		050	4770	^		4040
Satd. Flow (perm)	1750	953	1773	0	214	1842
Right Turn on Red		Yes	05	Yes		
Satd. Flow (RTOR)		93	25			0.0
Link Speed (k/h)	40		30			30
Link Distance (m)	107.6		191.3			74.7
Travel Time (s)	9.7		23.0			9.0
Confl. Peds. (#/hr)		146		1	1	
Confl. Bikes (#/hr)		12		119		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	208	93	920	186	31	853
Shared Lane Traffic (%)						
Lane Group Flow (vph)	208	93	1106	0	31	853
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.5	T T	3.5	, , , , , , , , , , , , , , , , , , ,		3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	1.6		1.6			1.6
Two way Left Turn Lane						
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	14		14	24	
Number of Detectors	1	1	2		1	2
Detector Template	Left	Right	Thru		Left	Thru
Leading Detector (m)	6.1	6.1	30.5		6.1	30.5
Trailing Detector (m)	0.0	0.0	0.0		0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0		0.0	0.0
1 /	6.1	6.1	1.8		6.1	1.8
Detector 1 Size(m)						
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel	0.0	0.0	0.0		0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0		0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0		0.0	0.0
Detector 2 Position(m)			28.7			28.7
Detector 2 Size(m)			1.8			1.8
Detector 2 Type			CI+Ex			CI+Ex
Detector 2 Channel						
Detector 2 Extend (s)			0.0			0.0

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 65

Lanes, Volumes, Timings 9024: Dufferin St & New Liberty St

09/30/2021

Turn Type		€	•	Ī		-	†	
rotected Phases	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
remitted Phases 8 8 8 2 6 6 elector Phase 8 8 2 6 6 elector Phase 8 8 2 6 6 elector Phase 8 elector Phase 9 elector Ph	Turn Type	Perm	Perm	NA		Perm	NA	
Note Color	Protected Phases			2			6	
witch Phase inimum Initial (s)	ermitted Phases	8	8			6		
inimum Initial (s) 7.0 7.0 7.0 7.0 7.0 7.0 inimum Split (s) 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	etector Phase	8	8	2		6	6	
inimum Split (s)	witch Phase							
otal Split (s)	linimum Initial (s)	7.0	7.0	7.0		7.0	7.0	
otal Split (s)	linimum Split (s)	24.0	24.0	24.0		24.0	24.0	
Asximum Green (s)	otal Split (s)	24.0	24.0	66.0		66.0	66.0	
Fellow Time (s)	otal Split (%)	26.7%	26.7%	73.3%		73.3%	73.3%	
All-Red Time (s)	Maximum Green (s)	18.0	18.0	60.0		60.0	60.0	
ost Time Adjust (s)	rellow Time (s)	4.0	4.0	4.0		4.0	4.0	
otal Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 aad/Lag ead-Lag Optimize? ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 acteal Mode None None C-Max C-Max C-Max Valk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 acteal Mode None None C-Max C-Max C-Max Valk Time (s) 11.0 11.0 11.0 11.0 11.0 11.0 11.0 acted Estran Calls (#hr) 0 0 0 0 0 0 0 ct Effct Green (s) 16.1 16.1 63.9 63.9 63.9 63.9 cotted et g/C Ratio 0.18 0.18 0.71 0.71 0.71 c/c Ratio 0.67 0.38 0.87 0.20 0.65 control Delay 44.9 11.5 20.6 9.1 10.6 cotal Delay 0.0 0.0 5.1 0.0 0.0 cotal Delay 44.9 11.5 25.8 9.1 10.6 cos D B C A B pupproach Delay 34.6 25.8 10.6 pupproach LOS C C C B deteresction Summary trea Type: Other cotal Delay Cotal Delay 10.0 0.0 0.0 cotal Delay 10.0 0.0 0.0 0.0 cotal Delay 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	
ead/Lag Optimize? February February	ost Time Adjust (s)	-1.0	-1.0	-1.0		-1.0	-1.0	
ead/Lag Optimize? Fehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Iteration (s) 3.0 3.0 3.0 3.0 Iteration (s) 3.0 3.0 3.0 Iteration (s) 7.0 7.0 7.0 7.0 Iteration (s) 7.0 7.0 7.0 7.0 Iteration (s) 7.0 Iteration (s) 7.0 7.0 Iterati	otal Lost Time (s)	5.0	5.0	5.0		5.0	5.0	
ead-Lag Optimize? chicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 cleal Mode None None C-Max C-Max C-Max Valk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 lash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 11.0 cledestrian Calls (#hr) 0 0 0 0 0 0 0 cuteffct Green (s) 16.1 16.1 63.9 63.9 63.9 cutuated g/C Ratio 0.18 0.18 0.71 0.71 0.71 0.71 c/C Ratio 0.67 0.38 0.87 0.20 0.65 control Delay 44.9 11.5 20.6 9.1 10.6 cotal Delay 44.9 11.5 25.8 9.1 10.6 COS D B C A B approach Delay 34.6 25.8 10.6 pproach LoS C C B attersection Summary rea Type: Other cycle Length: 90 cutuated Cycle Length: 90 citoticol Type: Actuated-Coordinated laximum v/c Ratic: 0.87 tersection Signal Delay: 21.1 Intersection LOS: C tersection Capacity Utilization 77.1% Intersection LOS: C control Types: Outferin St & New Liberty St cycle Length: 90 control Type: Actuated-Coordinated laximum v/c Ratic: 0.87 tersection Capacity Utilization 77.1% Intersection LOS: C control Capacity Utilization 77.1% Intersection LOS: C control Types: Outferin St & New Liberty St								
Tehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.	.ead-Lag Optimize?							
Alexael Mode None None C-Max C-Max C-Max		3.0	3.0	3.0		3.0	3.0	
Valk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Recall Mode							
lash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 11.0 ledestrian Calls (#hhr) 0 0 0 0 0 0 0 0 cledestrian Calls (#hhr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Valk Time (s)							
Sedestrian Calls (#/hr)	\ /							
16.1 16.1 16.1 63.9								
Cataled g/C Ratio 0.18 0.18 0.71 0.71 0.71 0.72 0.73 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0								
/c Ratio 0.67 0.38 0.87 0.20 0.65 /control Delay 44.9 11.5 20.6 9.1 10.6 /cueue Delay 0.0 0.0 5.1 0.0 0.0 /cotal Delay 44.9 11.5 25.8 9.1 10.6 /cotal Delay 44.9 11.5 25.8 9.1 10.6 /cotal Delay 34.6 25.8 10.6 /cota								
Control Delay 44.9 11.5 20.6 9.1 10.6 Capacity Delay 0.0 0.0 5.1 0.0 0.0 Capacity Delay 0.0 0.0 5.1 0.0 0.0 Capacity Delay 44.9 11.5 25.8 9.1 10.6 Capacity Delay 34.6 25.8 9.1 10.6 Capacity Delay 34.6 25.8 10.6 Capacity Delay 34.6 25.8 10.6 Capacity Delay Capac	//c Ratio							
Queue Delay								
Otal Delay								
OS D B C A B pproach Delay 34.6 25.8 10.6 pproach Delay 34.6 25.8 10.6 pproach LOS C C B buttersection Summary trea Type: Other Sycle Length: 90 Ctuated Cycle Length: 90 Ctuated Cycle Length: 90 Ctuated Cycle Length: 90 Control Type: Actuated-Coordinated laximum v/c Ratic: 0.87 terresection Signal Delay: 21.1 Intersection LOS: C Intersection Capacity Utilization 77.1% ICU Level of Service D Control Type: Period (min) 15 Splits and Phases: 9024: Dufferin St & New Liberty St		44.9	11.5	25.8				
pproach Delay 34.6 25.8 10.6 pproach LOS C C B Intersection Summary rea Type: Other Sycle Length: 90 Section Summary Office: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green latural Cycle: 90 Section Signal Delay: 21.1 Intersection LOS: C Intersection Capacity Utilization 77.1% ICU Level of Service D Inalysis Period (min) 15 Septits and Phases: 9024: Dufferin St & New Liberty St	LOS							
pproach LOS C C B Intersection Summary Irea Type: Other Sycle Length: 90 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Intersection Capacity Utilization 77.1% Intersection LOS: C Intersection Capacity Utilization 77.1% Intersection Capacity Utilization 77.1% Intersection Capacity Utilization Intersection LOS: C Intersection Capacity Utilization Intersection LOS				_		- / \		
ntersection Summary rea Type: Other cycle Length: 90 ctuated Cycle Length: 90 fifset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green latural Cycle: 90 control Type: Actuated-Coordinated laximum v/c Ratio: 0.87 tersection Signal Delay: 21.1 Intersection LOS: C tersection Capacity Utilization 77.1% ICU Level of Service D unallysis Period (min) 15 splits and Phases: 9024: Dufferin St & New Liberty St								
rea Type: Other yde Length: 90 ctuated Cycle Length: 90 ffset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green atural Cycle: 90 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.87 tersection Signal Delay: 21.1 Intersection LOS: C tersection Capacity Utilization 77.1% ICU Level of Service D nalysis Period (min) 15 plits and Phases: 9024: Dufferin St & New Liberty St								
ycle Length: 90 ctuated Cycle Length: 90 ffiset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green atural Cycle: 90 control Type: Actuated-Coordinated laximum v/c Ratio: 0.87 tersection Signal Delay: 21.1 Intersection LOS: C tersection Capacity Utilization 77.1% ICU Level of Service D nalysis Period (min) 15 plits and Phases: 9024: Dufferin St & New Liberty St		Other						
Cituated Öycle Length: 90 Iffset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green Iatural Cycle: 90 Iontrol Type: Actuated-Coordinated Iaximum vic Ratio: 0.87 Intersection Signal Delay: 21.1 Intersection Capacity Utilization 77.1% IcU Level of Service D Inallysis Period (min) 15 Iplits and Phases: 9024: Dufferin St & New Liberty St		30101						
offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green latural Cycle: 90 control Type: Actuated-Coordinated laximum v/c Ratio: 0.87 ntersection Signal Delay: 21.1 Intersection LOS: C ntersection Capacity Utilization 77.1% ICU Level of Service D nalysis Period (min) 15 pilits and Phases: 9024: Dufferin St & New Liberty St		0						
latural Cycle: 90 control Type: Actuated-Coordinated latkimum v/c Ratio: 0.87 Intersection Signal Delay: 21.1 Intersection LOS: C Intersection Capacity Utilization 77.1% ICU Level of Service D Inalysis Period (min) 15 Icupits and Phases: 9024: Dufferin St & New Liberty St			NRT and	6:SBTL 9	Start of G	reen		
control Type: Actuated-Coordinated laximum v/c Ratio: 0.87 tersection Signal Delay: 21.1 Intersection LOS: C tersection Capacity Utilization 77.1% ICU Level of Service D unalysis Period (min) 15 pults and Phases: 9024: Dufferin St & New Liberty St		a to pridoo 2.	itDi ullu	0.0D1L, 0	oluit of O	10011		
Askimum v/c Ratio: 0.87 Intersection Signal Delay: 21.1 Intersection LOS: C Icu Level of Service D Intersection (min) 15 Iplits and Phases: 9024: Dufferin St & New Liberty St		oordinated						
ntersection Signal Delay: 21.1 Intersection LOS: C Intersection Capacity Utilization 77.1% ICU Level of Service D Inalysis Period (min) 15 Iplits and Phases: 9024: Dufferin St & New Liberty St		oordinated						
ntersection Capacity Utilization 77.1% ICU Level of Service D nalysis Period (min) 15 pilits and Phases: 9024: Dufferin St & New Liberty St \$\int_{\sigma_2} \emptyset{\text{R}}\$ 100 150 150 150 150 150 110 150 150 150 150 110 150 150 150 150 110 150 150 150 150 110 150 150 150 150 110 150 150 150 110 150 150 150 110 150 150 150 110 150 150 150 110 150 110 150 150 110 150 150 110 150 150 110 150 150 110 150 150 110 150 150 110 150 1		21.1			In	torcoctio	n I OQ- C	
inalysis Period (min) 15 iplits and Phases: 9024: Dufferin St & New Liberty St								
plits and Phases: 9024: Dufferin St & New Liberty St		ZaliUII / / / / / / /			ic	o Level	OI SEIVICE L	
	analysis i silva (iiiii) is							
i6 s	Splits and Phases: 902	4: Dufferin St	& New L	iberty St				
i6 s	T _{(72 (P)}							
→ Ø6 (R)	1 2/2 (K)							ı
▼ Ø6 (R) Ø8	\.							3
	▼ [®] Ø6 (R)							√ Ø8

Scenario 1 Total Future PM 11:59 pm 05/05/2014 No Improvements HDR Corporation

Synchro 11 Report Page 66

9024: Dufferin St & New Liberty St

09/30/2021

	•	•	†	-	ţ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	208	93	1106	31	853
v/c Ratio	0.67	0.38	0.87	0.20	0.65
Control Delay	44.9	11.5	20.6	9.1	10.6
Queue Delay	0.0	0.0	5.1	0.0	0.0
Total Delay	44.9	11.5	25.8	9.1	10.6
Queue Length 50th (m)	33.5	0.0	125.7	1.6	70.0
Queue Length 95th (m)	54.2	12.2	#254.4	6.2	116.4
Internal Link Dist (m)	83.6		167.3		50.7
Turn Bay Length (m)	15.0				
Base Capacity (vph)	369	274	1266	152	1308
Starvation Cap Reductn	0	0	115	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.56	0.34	0.96	0.20	0.65

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 9024: Dufferin St & New Liberty St

09/30/2021

### A SEA 167 28 768 ### A SEA 100 1900 1900 1900 ### A SEA 100 1.00 1.00 1.00 ### A SEA 1.00 1.00 1.00 ### A SEA 1.00 1.00 ### A SEA 1.00 1.0		•	•	†	~	/	↓			
rizeffic Volume (vph) 187 84 828 167 28 768	Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Future Volume (vph) 187 84 828 167 28 768 deal Flow (vphp) 1900 1900 1900 1900 1900 1900 1900 190	Lane Configurations	, j	7	f)			†			
	Traffic Volume (vph)									
Total Lost time (s)	Future Volume (vph)	187		828		28				
Cane Util. Factor	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Tipb, ped/bikes	Total Lost time (s)	5.0	5.0	5.0		5.0	5.0			
	Lane Util. Factor	1.00	1.00	1.00		1.00	1.00			
Tit Continue of the continue o	Frpb, ped/bikes	1.00	0.61	0.99		1.00	1.00			
Tit Protected 0.95 1.00 1.00 0.95 1.00 1.00 atd. Flow (prot) 1750 950 1775 1750 1842 1.00 atd. Flow (perm) 1750 950 1775 1750 1842 1.00 atd. Flow (perm) 1750 950 1775 214 1842 1.00 atd. Flow (perm) 1750 950 1775 214 1842 1.00 atd. Flow (ph) 208 93 920 186 31 853 1853 1853 1853 1853 1853 1853 18	Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00			
Said. Flow (prot) 1750 950 1775 1750 1842 It Permitted 0.95 1.00 1.00 0.12 1.00 Said. Flow (perm) 1750 950 1775 214 1842 Said. Flow (perm) 1850 975 214 1842 Said. Flow (perm) 1850 975 214 1842 Said. Flow (perm) 1850 975 1775 214 1842 Said. Flow (perm) 1850 975 975 975 975 975 975 975 975 975 975	Frt	1.00	0.85	0.98		1.00	1.00			
Said. Flow (prot) 1750 950 1775 1750 1842 It Permitted 0.95 1.00 1.00 0.12 1.00 Said. Flow (perm) 1750 950 1775 214 1842 Said. Flow (perm) 1850 975 214 1842 Said. Flow (perm) 1850 975 214 1842 Said. Flow (perm) 1850 975 1775 214 1842 Said. Flow (perm) 1850 975 975 975 975 975 975 975 975 975 975	Flt Protected	0.95	1.00	1.00		0.95	1.00			
Cit Permitted 0.95	Satd. Flow (prot)									
Sald. Flow (perm) 1750 950 1775 214 1842 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	Flt Permitted									
Peak-hour factor, PHF										
Adj. Flow (vph) 208 93 920 186 31 853 ATTOR Reduction (vph) 0 76 7 0 0 0 0 Jonni Peds. (#/hr) 1099 0 31 853 Jonni Peds. (#/hr) 146 1 1 Jonni Deng. (#/hr) 12 119 Jonni Deng. (#/hr) 12 119 Jonni Deng. (#/hr) 15 12 119 Jonni Deng. (#/hr) 16 12 119 Jonni Deng. (#/hr) 16 12 119 Jonni Deng. (#/hr) 17 12 119 Jonni Deng. (#/hr) 18 18 18 19 Jonni Deng. (#/hr) 19 19 19 19 19 19 19 19 19 19 19 19 19					0.90					
ATOR Reduction (vph)										
Agriculture Continue Contin										
Confi. Peds. (#/hr)										
12 119		200		1033			000			
Turn Type										
Protected Phases 8 8 8 6 6					119		NIA			
Permitted Phases 8 8 8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Perm	Perm			Perm				
Interview Green, G (s) 15.1 15.1 62.9 62.9 62.9 Infective Green, g (s) 16.1 16.1 63.9 63.9 63.9 Actuated g/C Ratio 0.18 0.18 0.71 0.71 0.71 Dearance Time (s) 6.0 6.0 6.0 6.0 6.0 Jehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Jane Grp Cap (vph) 313 169 1260 151 1307 I/s Ratio Port c0.62 0.46 I/s Ratio Perm c0.12 0.02 0.14 I/c Ratio 0.66 0.10 0.87 0.21 0.65 Iniform Delay, d1 34.4 30.9 9.9 4.4 7.1 Porgression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 5.2 0.3 8.5 3.1 2.5 Delay (s) 39.7 31.1 18.4 7.5 9.6 Avered of Service D B A A perpoach LOS D B A A contraction Summary HCM 2000 Control Delay 17.4 HCM 2000 Level of Service B A contraction Capacity utilization		•	•	2		•	6			
Effective Green, g (s) 16.1 16.1 63.9 63.9 63.9 63.9 63.0 cctuated g/C Ratio 0.18 0.18 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71		-	-	00.0						
Actuated g/C Ratio 0.18 0.18 0.71 0.71 0.71 0.71 Diearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Vehicle Extension (s) 3.1 169 1260 151 1307 Very Ratio Prot c0.62 0.46 Very Ratio Prot c0.62 0.46 Very Ratio Porm c0.12 0.02 0.14 Very Ratio Company (a) 1.00 1.00 1.00 1.00 Iniform Delay, d1 34.4 30.9 9.9 4.4 7.1 Very Resion Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 5.2 0.3 8.5 3.1 2.5 Delay (s) 39.7 31.1 18.4 7.5 9.6 Revel of Service D C B A A Reproach Delay (s) 37.0 18.4 9.5 Reproach LOS D B A Intersection Summary ICM 2000 Control Delay 17.4 HCM 2000 Level of Service B Intersection Capacity utilization 77.1% ICU Level of Service D Intersection Capacity Utilization 77.1% ICU Level of Service D										
Clearance Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0										
Vehicle Extension (s) 3.0										
Anne Grp Cap (vph) 313 169 1260 151 1307 158										
## Ratio Prot										
S Ratio Perm C0.12 0.02 0.14	Lane Grp Cap (vph)	313	169			151				
Variable	v/s Ratio Prot			c0.62			0.46			
Dinform Delay, d1	v/s Ratio Perm		0.02							
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	v/c Ratio	0.66	0.10	0.87		0.21	0.65			
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Uniform Delay, d1	34.4	30.9	9.9		4.4	7.1			
Note	Progression Factor	1.00	1.00	1.00		1.00	1.00			
Delay (s) 39.7 31.1 18.4 7.5 9.6 Level of Service D C B A A A Approach Delay (s) 37.0 18.4 9.5 A Intersection Summary HCM 2000 Control Delay 17.4 HCM 2000 Level of Service B A Intersection Capacity ratio 0.84 Cutated Cycle Length (s) 90.0 Sum of lost time (s) 11.0 Intersection Capacity Utilization 77.1% ICU Level of Service D	Incremental Delay, d2	5.2	0.3	8.5		3.1	2.5			
A	Delay (s)	39.7	31.1	18.4		7.5	9.6			
Approach Delay (s) 37.0 18.4 9.5 Approach LOS D B A Intersection Summary ICM 2000 Control Delay 17.4 HCM 2000 Level of Service B ICM 2000 Volume to Capacity ratio 0.84 Ckutated Cycle Length (s) 90.0 Sum of lost time (s) 11.0 Intersection Capacity Utilization 77.1% ICU Level of Service D	Level of Service									
A A A A	Approach Delay (s)									
## HCM 2000 Control Delay										
## HCM 2000 Control Delay 17.4 HCM 2000 Level of Service B ### HCM 2000 Volume to Capacity ratio 0.84 ### Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0 ### ntersection Capacity Utilization 77.1% ICU Level of Service D										
4CM 2000 Volume to Capacity ratio 0.84 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0 Intersection Capacity Utilization 77.1% ICU Level of Service D										
Actuated Cycle Length (s) 90.0 Sum of lost time (s) 11.0 ntersection Capacity Utilization 77.1% ICU Level of Service D					H	CM 2000	Level of Service	е	В	
ntersection Capacity Utilization 77.1% ICU Level of Service D		acity ratio								
	Actuated Cycle Length (s)									
Analysis Period (min) 15		ation			IC	CU Level o	of Service		D	
	Analysis Period (min)			15						

c Critical Lane Group

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	7	*	*	
Traffic Volume (vph)	0	248	0	733	670	74
Future Volume (vph)	0	248	0	733	670	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0	0.0	15.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	2.5		2.5			
Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850			0.987	
Flt Protected						
Satd. Flow (prot)	1842	1566	1842	1842	1818	0
Flt Permitted						
Satd. Flow (perm)	1842	1566	1842	1842	1818	0
Link Speed (k/h)	40			40	40	•
Link Distance (m)	579.0			241.4	424.1	
Travel Time (s)	52.1			21.7	38.2	
Confl. Peds. (#/hr)	<u></u>		9			9
Confl. Bikes (#/hr)		1	*			26
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.00	276	0.00	814	744	82
Shared Lane Traffic (%)				0		
Lane Group Flow (vph)	0	276	0	814	826	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5	- ugu	2011	3.5	3.5	· tigitt
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	1.6			1.6	1.6	
Two way Left Turn Lane	1.0			1.0	1.0	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	24	1.01	24	1.01	1.01	1.01
Sign Control	Stop	14	24	Free	Free	14
•	Stop			1166	1166	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 61.9%			IC	CU Level of	of Service I
Analysis Period (min) 15						

	•	*	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	ሻ	*	*	
Traffic Volume (veh/h)	0	248	0	733	670	74
Future Volume (Veh/h)	0	248	0	733	670	74
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	276	0	814	744	82
Pedestrians	9					
Lane Width (m)	3.5					
Walking Speed (m/s)	1.2					
Percent Blockage	1					
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				241		
pX, platoon unblocked	0.71			211		
vC, conflicting volume	1608	794	835			
vC1, stage 1 conf vol	.000		000			
vC2, stage 2 conf vol						
vCu, unblocked vol	1652	794	835			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.1	0.2				
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	28	100			
cM capacity (veh/h)	77	385	793			
. , , ,				ND 0	00.4	
Direction, Lane # Volume Total	EB 1	EB 2 276	NB 1 0	NB 2 814	SB 1 826	
Volume Left	0	0	0	014	020	
	0	276	0	0	82	
Volume Right cSH	1700	385	1700	1700	1700	
		0.72		0.48	0.49	
Volume to Capacity	0.00		0.00			
Queue Length 95th (m)	0.0	41.2	0.0	0.0	0.0	
Control Delay (s)	0.0	34.7	0.0	0.0	0.0	
Lane LOS	A	D				
Approach Delay (s)	34.7		0.0		0.0	
Approach LOS	D					
Intersection Summary						
Average Delay			5.0			
Intersection Capacity Utili	zation		61.9%	IC	U Level o	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 9025: Strachan Ave & New Liberty St

HCM Unsignalized Intersection Capacity Analysis 9029: Atlantic Ave

09/30/2021

19				

	•	•	†		-	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		†			^	
Traffic Volume (vph)	25	6	30	10	4	72	
Future Volume (vph)	25	6	30	10	4	72	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt	0.973		0.966				
Flt Protected	0.962					0.998	
Satd. Flow (prot)	1724	0	1779	0	0	1838	
Flt Permitted	0.962					0.998	
Satd. Flow (perm)	1724	0	1779	0	0	1838	
Link Speed (k/h)	50		50			50	
Link Distance (m)	66.8		42.4			34.0	
Travel Time (s)	4.8		3.1			2.4	
Confl. Peds. (#/hr)	53	2		245	245		
Confl. Bikes (#/hr)		3		8			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph)	28	7	33	11	4	80	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	35	0	44	0	0	84	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	3.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	1.6		1.6			1.6	
Two way Left Turn Lane							
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	
Turning Speed (k/h)	24	14		14	24		
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizati	on 24.0%			IC	U Level	of Service	e A
Analysis Period (min) 15							
. , , ,							

9029. Atlantic Ave							03
	•	*	†	1	-	Ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		^			^	
Traffic Volume (veh/h)	25	6	30	10	4	72	
Future Volume (Veh/h)	25	6	30	10	4	72	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	28	7	33	11	4	80	
Pedestrians	245		53			2	
Lane Width (m)	3.5		3.5			3.5	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	20		4			0	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			42				
pX, platoon unblocked							
vC, conflicting volume	424	286			289		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	424	286			289		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	94	99			100		
cM capacity (veh/h)	448	603			1020		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	35	44	84				
Volume Left	28	0	4				
Volume Right	7	11	0				
cSH	472	1700	1020				
Volume to Capacity	0.07	0.03	0.00				
Queue Length 95th (m)	1.8	0.0	0.1				
Control Delay (s)	13.2	0.0	0.4				
Lane LOS	В		Α				
Approach Delay (s)	13.2	0.0	0.4				
Approach LOS	В						
Intersection Summary							
Average Delay			3.1				
Intersection Capacity Utilizat	tion		24.0%	IC	U Level	of Service	A
Analysis Period (min)			15				

Appendix E: Transportation Tomorrow Survey Queries

Mon Dec 14 2020 23:14:57 GMT-0500 (Eastern Standard Time)

Frequency Distribution Query Form - Transit - 2016 v1.1

Field: Access mode to transit - mode_accs

Filters:

GO rail boarding station - go_on In GS11,

and

Route used on link #1 - route_1 In GT01,GT02,GT03,GT05

and

Start time of trip - start_time In 0630-0930

Table: Tran 2016

ROW:	Count:	Expande
Cycle	5	55
Auto driver	1	14
Walk	10	139
Total:	16	208

Mode	Trips	Share
Transit	0	0%
Cycle	55	26%
Auto driver	14	7%
Auto passenger	0	0%
Taxi	0	0%
Walk	139	67%
Other	0	0%
Total	208	

Mon Dec 14 2020 23:25:05 GMT-0500 (Eastern Standard Time)

Frequency Distribution Query Form - Transit - 2016 v1.1

Field: Access mode to transit - mode_accs

Filters:

GO rail boarding station - go_on In GS11,

and

Route used on link #1 - route_1 In GT01,GT02,GT03,GT05

and

Start time of trip - start_time In 1530-1830

Table: Tran 2016

Row:	Count:	Expanded:
Cycle	1	11
Auto passenger	1	7
Taxi passenger	1	23
Paid rideshare	1	11
Walk	65	1305
Total:	69	1358

Assumed equal to Access Mode for PM

Mode	Trips	Share
Transit	0	0%
Cycle	11	1%
Auto driver	0	0%
Auto passenger	7	1%
Taxi	34	3%
Walk	1305	96%
Other	0	0%
Total	1357	·

Mon Dec 14 2020 23:25:05 GMT-0500 (Eastern Standard Time)

Frequency Distribution Query Form - Transit - 2016 v1.1

Field: Access mode to transit - mode_accs

Filters:

GO rail boarding station - go_on In GS11,

and

Route used on link #1 - route_1 In GT01,GT02,GT03,GT05

and

Start time of trip - start_time In 1530-1830

Table: Tran 2016

Row:	Count:	Expanded:
Cycle	1	11
Auto passenger	1	7
Taxi passenger	1	23
Paid rideshare	1	11
Walk	65	1305
Total:	69	1358

Mode	Trips	Share
Transit	0	0%
Cycle	11	1%
Auto driver	0	0%
Auto passenger	7	1%
Taxi	34	3%
Walk	1305	96%
Other	0	0%
Total	1357	

16

208

Mon Dec 14 2020 23:14:57 GMT-0500 (Eastern Standard Time)

Frequency Distribution Query Form - Transit - 2016 v1.1

Field: Access mode to transit - mode_accs

Filters:

GO rail boarding station - go_on In GS11,

and

Route used on link #1 - route_1 In GT01,GT02,GT03,GT05

and

Total:

Start time of trip - start_time In 0630-0930

Table: Tran 2016

Row: Count Expanded:

 Cycle
 5
 55

 Auto driver
 1
 14

 Walk
 10
 139

Assumed	equal	to Access
Mo	da for	

Mode	Trips	Share
Transit	0	0%
Cycle	55	26%
Auto driver	14	7%
Auto passenger	0	0%
Taxi	0	0%
Walk	139	67%
Other	0	0%
Total	208	

TTS Trip Distribution Summary

In order to inform the trip assignment stage of the analysis, informaton about the general trip distribution is required to inform the analysis. The distribution represents the proportion of trips to and away from the site in any given direction. The following pages summarizes the general trip distribution results, which were calculated using Transportation Tomorrow Survey (TTS) 2016 trip origin and destination data. Trips were grouped under cardinal directions based on the relative angle between trip origin and destination, and appropriate adjustments were made to the calculation to conform to local geography and street grid.

The "TTS Directional Distribution Summary" on the next page presents a summary of the calculations described above, along with notes on any details specific to the analysis in this report. The table shows the total number of trips to and from the subject site categorized into general directions (North, Northeast, East etc.) and the percentage share of trips in each general direction in all directions.

The pages after show graphical illustrations of the categorizations for all Traffic Analysis Zones (TAZ) in the TTS survey area. Note that the latest survey zones were last updated in 2006.

These results are used as reference information for the trip assignment. They do not directly determine the trip assignment on the study network. The final trip assignments are completed based on a combination of local context, engineering experience, and engineering judgement, with the trip distribution information presented here to illustrate general travel behaviour.

TTS Directional Distribution Summary: Test Project

Notes:

- 1. Directions determined based on centroid coordinates of destination/origin traffic analysis zones.
- 2. 'Internal' refers to local trips made within the defined radius, while 'External' refers to trips made to areas outside of the defined radius.

							Internal									External				
	Time Period	Direction	NW	N	NE	E	SE	S	SW	W	Total	NW	N	NE	E	SE	S	SW	W	Total
	A.M.	Inbound	538	321	0	260	0	0	0	0	1119	0	0	0	0	0	0	0	0	0
Trino	A.W.	Outbound	564	638	0	666	14	0	0	0	1882	0	0	0	0	0	0	0	0	0
P.M.	ВΜ	Inbound	611	832	0	589	0	0	12	0	2044	0	0	0	0	0	0	0	0	0
	Outbound	783	480	0	320	11	0	18	0	1612	0	0	0	0	0	0	0	0	0	
	A.M.	Inbound	48%	29%	0%	23%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Porcontago		Outbound	30%	34%	0%	35%	1%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Percentage		Inbound	30%	41%	0%	29%	0%	0%	1%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	P.M. ⊢	Outbound	49%	30%	0%	20%	1%	0%	1%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%

TAZ Directional Categorisation Visualisation (City of Toronto)

Outputs:	AM (IN)	Internal									External								
-		Internal	External																
	Direction	I	NW	N	NE	E	SE	S	SW	W	NW	N	NE	E	SE	S	SW	W	Totals
	Trips	0	538	321	0	260	0	0	0	0	0	0	0	0	0	0	0	0	1119
	%	0.00%	48.08%	28.69%	0.00%	23.24%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
	% w/o trips in subject TAZ	0.00%	48.08%	28.69%	0.00%	23.24%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%

	•																	
				Input Area		Format												
			Finalized															
	Sum	Direction	Direction	Include Include	Incl	lude Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include
Include				Mon Dec 14 2020 21:09:24 GM	Г-0500 ((Eastern Standaı	rd Time) - Ru	n Time: 2	515ms									
Include													'C D	D.4.	A B.A	/INI\		
Include				Cross Tabulation Query Form -	Trip - 20	016 v1.1						11	'S Rav	v Data	a: AIVI	(III)		
Include																		
Include				Row: 2006 GTA zone of origin -									Trip Distrib	ution for Ol	L PPUDO t	rips		
Include				Column: Planning district of des	ination	- pd_dest												
Include																		
Include							•	Trips beyo	ond 3.1kn	n from stat	ion are exc	luded						
Include				Filters:														
Include				Planning district of destir	6													
Include				and														
Include				Start time of trip - start_time In 0	630-093	30												
Include																		
Include				Trip 2016														
Include				Table:														
Include																		
Include				PD 5 o	f To PD	6 of Toronto												
Include	11		E	85	0	11												
Include	249		E	89	69	180												
Include	28		N	96	28	0												
Include		N	N	97	5	5												
Include	121		N		113	8												
Include	136		N	101	5	131												
Include		N	N	102	26	0												
Include			NW	107	64	52												
Include			NW	108	0	32												
Include		NW	NW	109	22	6												
Include		NW	NW		155	21												
Include		NW	NW	113	70	57												
Include	59	NW	NW	114	55	4												
Include				9065	0	9												
Include				9998	44	0												

0.4	AM (OUT)	1									F t								
Outputs:	AM (OUT)	Internal									External								
		Internal	External																
	Direction	I	NW	N	NE	E	SE	S	SW	W	NW	N	NE	E	SE	S	SW	W	Totals
	Trips	0	564	638	0	666	14	0	0	0	0	0	0	0	0	0	0	0	1882
	%	0.00%	29.97%	33.90%	0.00%	35.39%	0.74%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
	% w/o trips in subject TAZ	0.00%	29.97%	33.90%	0.00%	35.39%	0.74%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%

	•																		
				Input Area		For	mat												
		Default	Finalized																
	Sum	Direction	Direction		Include	Include	Include		Include		Include	Include	Include	Include	Include	Include	Include	Include	Include
Include				Mon Dec 14 2020 21:	11:35 GMT-05	500 (Easter	n Standard	Time) - Ru	ın Time: 24	41ms									
Include													TTC	e Dow	Doto		OUT\		
Include				Cross Tabulation Que	ry Form - Trip	- 2016 v1.	1						113	S Raw	Dala	: AIVI (001)		
Include																			
Include				Row: 2006 GTA zone			est							Trip Distrib	ution for O	L PPUDO t	rips		
Include				Column: Planning dist	rict of origin -	pd_orig													
Include																			
Include									Trips bey	ond 3.1k	m from stat	tion are ex	cluded						
Include				Filters:															
Include				Planning district of original	gin 6	6													
Include				and															
Include				Start time of trip - star	t_time In 0630	0-0930													
Include																			
Include				Trip 2016															
Include				Table:															
Include																			
Include					PD 5 of To	PD 6 of To	oronto												
Include	56	6 E	E	85	C) 50	6												
Include	14	1 SE	SE	86	C) 14	4												
Include	610) E	E	89	31	579	9												
Include	238	3 N	N	96	C	23	8												
Include	52	2 N	N	97	C	5:	2												
Include	311	I N	N	101	119	19:	2												
Include	37	7 N	N	102	C) 3	7												
Include	110	NW	NW	107	61	49	9												
Include	63	3 NW	NW	109	C) 6:	3												
Include	138	NW NW	NW	110	8	3 130	0												
Include	77	7 NW	NW	113	C														
Include		NW	NW	114	38														
Include				9030	C														
Include				9031	17		0												
Include				9032	21	3.	7												
Include				9053	8		0												
Include				9066	33		0												
Include				9068	C														
Include				9998	16														

Outputs:	PM (IN)	Internal									External								
		Internal	External																
	Direction	I	NW	N	NE	E	SE	S	SW	W	NW	N	NE	E	SE	S	SW	W	Totals
	Trips	0	611	832	0	589	0	0	12	0	0	0	0	0	C	0	0	0	2044
	%	0.00%	29.89%	40.70%	0.00%	28.82%	0.00%	0.00%	0.59%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
	% w/o trips in subject TAZ	0.00%	29.89%	40.70%	0.00%	28.82%	0.00%	0.00%	0.59%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%

	•						-												
				Input Area		For	mat												
			Finalized																
	Sum	Direction	Direction		Include	Include	Include		Include		Include	Include	Include	Include	Include	Include	Include	Include	Include
Include				Mon Dec 14 2020 21:	10:23 GMT-05	500 (Easter	n Standard	Time) - Ru	ın Time: 28	392ms									
Include													TT	S Rav	v Date	a. DM	/INI\		
Include				Cross Tabulation Que	ry Form - Trip	- 2016 v1.	1							3 Nav	N Date	a. Pivi	(114)		
Include																			
Include				Row: 2006 GTA zone										Trip Distrib	ution for O	L PPUDO t	rips		
Include				Column: Planning dist	rict of destina	tion - pd_de	est												
Include																			
Include									Trips bey	ond 3.1k	m from stat	tion are exc	cluded						
Include				Filters:															
Include				Planning district of de	stir 6	j													
Include				and															
Include				Start time of trip - star	t_time In 1530	0-1830													
Include																			
Include				Trip 2016															
Include				Table:															
Include																			
Include					PD 5 of To														
Include	109		E	85	21														
Include		SW	SW	88	С														
Include	480		E	89	20														
Include	394		N	96	С														
Include	128		N	97	71														
Include	24		N	99	С														
Include	11		N	100	C														
Include	209		N	101	37														
Include	66		N	102	С														
Include			NW	107	130														
Include		NW	NW	109	C														
Include		NW	NW	110	22														
Include		NW	NW	113	C														
Include	149	NW	NW	114	49														
Include				9030	C														
Include				9031	20		0												
Include				9032	C	67	7												
Include				9066	33		0												
Include				9998	123	14	5												

outs: PM (OUT)	Internal									External								
	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal	External	1							
Direction	_	NW	N	NE	E	SE	S	SW	W	NW	N	NE	E	SE	S	SW	W	Totals
Trips	0	783	480	0	320	11	0	18	0	0	0	0	0	0	0	0	0	1612
%	0.00%	48.57%	29.78%	0.00%	19.85%	0.68%	0.00%	1.12%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
% w/o trips in subject TAZ	0.00%	48.57%	29.78%	0.00%	19.85%	0.68%	0.00%	1.12%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
			Input Area		For	mat												

				Input Area		For	mat											
			Finalized															
	Sum	Direction	Direction	Include	Include	Include	Include	Include Inc	lude Include	Include	Include	Include	Include	Include	Include	Include	Include	Include
Include				Mon Dec 14 2020 21:11	:13 GMT-	-0500 (Ea	stern Star	ndard Time) -	Run Time: 24	171								
Include												ттс	e Daw	Data	DM /	OUT)		
Include				Cross Tabulation Query	Form - T	rip - 2016	v1.1					113	S Raw	Data	: PIVI (UUI)		
Include																		
Include				Row: 2006 GTA zone of									Trip Distrib	ution for O	L PPUDO	trips		
Include				Column: Planning distric	t of origin	ı - pd_orig	3											
Include																		
Include								Tri	ps beyond 3.1	km from sta	ation are ex	cluded						
Include				Filters:														
Include				Planning district of origin	1 6	i												
Include				and														
Include				Start time of trip - start_t	time In 15	30-1830												
Include																		
Include				Trip 2016														
Include				Table:														
Include																		
Include					PD 5 of	1PD 6 of 7	Toronto											
Include		40 E	E	85	0	40)											
Include		11 SE	SE	86	11	0)											
Include		14 SW	SW	87	0	14												
Include		4 SW	SW	88	0	4												
Include	28	80 E	E	89	138	142												
Include		36 N	N	96	17	19)											
Include		51 N	N	97	15	36												
Include	19	92 N	N	99	113	79)											
Include		56 N	N	100	20	36												
Include	1:	18 N	N	101	29	89)											
Include		27 N	N	102	11	16												
Include	2:	26 NW	NW	107	64	162												
Include		35 NW	NW	108	8	27												
Include		63 NW	NW	109	0	63												
Include		29 NW	NW	110	144	185	i											
Include		93 NW	NW	113	49	44												
Include		37 NW	NW	114	30	7												
Include				9032	7	0)											
Include				9998	0	37												

	mn	Internal									External								
Outputs:															1				-
	Direction	Internal	Internal NW		Internal NE	Internal	Internal SE		Internal	Internal	NW		NE NE	External	External		SW	External	
			NVV	N 11	NE 10	35		٥ ^	SVV	VV	NVV	N O	NE C	1		S	SW	VV 57	Totals 129
	Trips %	0.00%	0.00%	8.53%	7.75%	27.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	12.409		0.00%	0.00%		
	% w/o trips in subject TAZ	0.00%	0.00%	8.53%	7.75%	27.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	12.409					
	% W/O trips in subject TAZ	0.00%	0.00%	6.53%	7.75%	21.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	12.407	0.00%	0.00%	0.007	44.19%	100.00%
				Input Area		Fori	mat [
			Finalized			1011	ilat												
	C		Direction		Include	Include	Include	landonia.	to all the	to a trade	Include	la alcoda	Include	Include	Include	Include	landonia.	Include	to alcore
Include	Sum	Direction	Direction	Fri Mar 12 2021 20:08:5							include	include	include	include	include	include	include	include	include
Include				FIT War 12 2021 20:06:5.	2 GIVI I -050	o (Eastern	Standard I	ime) - Rur	Time: 29	371118					TTS Raw [N-4 ABI (1	AIN.		
Include				Cross Tabulation Query	Eorm - Trir	- 2016 v1	1								115 Raw L	Jata: AWI (I	N)		
Include				Cross rabulation Query	- Omi - 111	7-2010 VI.							_						
Include				Row: 2006 GTA zone of	origin ata	OG oria							Trin	Dietributi	on for exis	tina Evhil	ition CO	totion	
Include				Column: 2006 GTA zone			doet						шр	Distributi	OII IOI EXIS	ung Exilic	illion GO s	station	
Include				Coldini. 2000 CTA 2016	oi destina	uon - giaou	_ucat												
Include																			
Include				Filters:															
Include				2006 GTA zone of destir	88	89													
Include				and		. 03													
Include				Start time of trip - start t	ime In 063	0.0030													
Include				and	1116 111 000	0-0330													
Include				Trip purpose of destinati	on - nurn (lest In F													
Include				Trip purpose of destinati	oii - puip_c	2001 1111													
Include				Trip 2016															
Include				Table:															
Include																			
Include					85	89													
Include	18	F	E	77	0														
Include	17		F	79	0	17													
Include			NE	91	o o														
Include			NE	98	o o	5													
Include	11		N	105	11														
Include				264	0														
Include				301	o o														
Include				313	ä														

Outnuts:	AM (OUT)	Internal									External								
outputo.			Internal	Internal	Internal	Internal	Internal	Internal	Internal			External	External	External	External	External	External	External	-
	Direction		NW		NE	E	SE		SW		NW	N	NE	E	SE		SW	W	Totals
	Trips	0	18	0		- 0		0	0	0	0	0	37	- () (0	48	108
	%	0.00%	16.67%	0.00%	4.63%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	34.26%	0.00%	0.00%	0.00%	0.00%		100.00%
	% w/o trips in subject TAZ	0.00%	16.67%	0.00%	4.63%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	34.26%	0.00%	0.00%	0.00%	0.00%		100.00%
								•											
				Input Area		Forr	nat												
		Default	Finalized																
	Sum	Direction	Direction	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include
Include				Fri Mar 12 2021 19:51:3	4 GMT-050	0 (Eastern S	Standard Tir	ne) - Run	Time: 2622	2ms									
Include														т	TS Raw Da	ta: AM (O	JT)		
Include				Cross Tabulation Query	Form - Trip	- 2016 v1.1													
Include																			-
Include				Row: 2006 GTA zone of			st						Trip	Distributi	on for exis	ting Exhib	ition GO s	tation	
Include				Column: 2006 GTA zone	of origin -	gta06_orig													
Include																			
Include																			
Include				Filters:															
Include				2006 GTA zone of origin	88	89	1												
Include				and															
Include				Start time of trip - start_t	ime In 0630	-0930													
Include				and															
Include				Trip purpose of origin - p	urp_orig In	F													
Include																			
Include				Trip 2016															
Include				Table:															
Include																			
Include					85														
Include			NE	98	0	5													
Include			NW	114	0														
Include				260	11	0													
Include				301	0														
Include			XNE	526	0														
Include	17	XW	XW	3699	0	17													

Outputs:	PM (IN)	Internal									External								
		Internal	Internal	Internal	Internal			Internal	Internal	Internal	External	External	External	External		External	External	External	
	Direction	I	NW	N	NE	E	SE	S	SW	W	NW	N	NE	E	SE	S	SW	W	Totals
	Trips	0	0	0	0	0	0	0	0	0	0	0	7	(0	0	22	
	%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	24.14%				0.00%		100.00%
	% w/o trips in subject TAZ	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	24.14%	0.00%	0.00%	0.00%	0.00%	75.86%	100.00%
				Input Area		Forn	nat												
			Finalized																
	Sum	Direction	Direction	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include	Include
Include				Fri Mar 12 2021 20:06:1	7 GMT-050	0 (Eastern S	Standard Tin	ne) - Run 1	Time: 2368	ms									
Include															TTS Raw D	ata: PM (II	N)		
Include				Cross Tabulation Query	Form - Trip	- 2016 v1.1													
Include																			_
Include				Row: 2006 GTA zone of									Trip	Distribution	on for exis	ting Exhib	ition GO s	tation	
Include				Column: 2006 GTA zone	of destinat	ion - gta06_	dest												
Include																			
Include																			
Include				Filters:															
Include				2006 GTA zone of destir	88	89													
Include				and															
Include				Start time of trip - start_t	ime In 1630	-1930													
Include				and															
Include				Trip purpose of destinati	on - purp_d	est In F													
Include																			
Include				Trip 2016															
Include				Table:															
Include																			
Include					89														
Include			XNE	234	7														
Include			XW	309	5														
Include	17	XW	XW	313	17														

tputs	PM (OUT)	Internal									External								
		Internal		Internal	Internal	Internal			Internal					External				External	
	Direction	I	NW	N		E		S	SW	W	NW	N	NE	E	SE	S	SW	W	Totals
	Trips	0	0		36					0	0		0	·) (0) (
	%	0.00%			62.07%			0.00%		0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%		100.00
	% w/o trips in subject TAZ	0.00%	0.00%	8.62%	62.07%	29.31%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00
				Input Area		For	rmat												
			Finalized																
	Sum	Direction	Direction									Include	Include	Include	Include	Include	Include	Include	Include
				Fri Mar 12 2021 19:56:0	0 GMT-0	500 (East	tern Stand	ard Time)	- Run Tim	e: 6139m	s								
														T	TS Raw Da	ata: PM (O	UT)		
				Cross Tabulation Query	Form - Tr	rip - 2016	3 v1.1												
				Row: 2006 GTA zone of									Trip I	Distributio	on for exis	ting Exhib	ition GO s	station	
				Column: 2006 GTA zone	of origin	- gta06_	orig												
				Filters:															
				2006 GTA zone of origin	88	89	9												
				and															
				Start time of trip - start_t	ime In 16	30-1930													
				and															
				Trip purpose of origin - p	ourp_orig	In F													
				Trip 2016															
				Table:															
					89														
		7 E	E	34	17														
		1 NE	NE	72	31														
		5 NE	NE	90	5														
		5 N	N	100	5														

Appendix F: Exhibition Station Trip Transfer Matrix

2041, 1 Hour AM Peak		OL EB	OL WB	GO Loc EB	GO Loc WE	GO Exp EB	GO EXP W	South	South	South	South	North	North	North	North	North	North	North		South		North	South	
From/To			io Line	GO Rai	I - Local	GO Rail -	Express		t Streetcar	Harbourfr	ont Streetcar		rin Bus	Ossing	ton Bus		cal Transit	Walk-out		Walk-out		to south-	to south-	Total
		EB	WB	EB	WB	EB	WB	NB/EB	SB/WB	EB	WB	SB/EB	NB/WB	SB	NB	EB	WB	to north	to LV	to EP	to south	west	east	1014
Ontario Line	EB			-	-				-	-			-	-	-		-		-		-			-
ontario Emo	WB	-		50	300	50	0	0	0	0	20	10	130	0	260	0	0	180	1,740	20	0	-		2,760
GO Rail - Local	EB	3,340		-	-			10	0	60	30	10	180	0	370	0	0	120	170	10	0			4,300
	WB	0		-	-		-	0	0	0	0	0	10	0	10	0	0	0	10	0	0	-	-	30
GO Rail - Express	EB	2,460		-	-			0	0	40	20	10	130	0	270	0	0	80	130	0	0			3,140
	WB	0		-	-			0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
Bathurst Streetcar	NB/EB	0		0	0	0	0		-	-			-	-	-		-		-		-			0
Sumurot otteetour	SB/WB	20		0	0	0	0		-	-			-	-	-		-		-		-			20
Harbourfront Streetcar	EB	240		10	10	10	0		-						-				-					270
Tarbour on on occou	WB	0		10	10	10	0	-	-	-				-	-				-	-				30
Dufferin Bus	SB/EB	380		10	20	10	0		-	-			-	-	-		-		-		-			420
Juliani Bus	NB/WB	10		0	0	0	0		-						-				-					10
Ossington bus	SB	160		10	10	10	0	-	-	-				-	-				-	-				190
oodington buo	NB	0		0	0	0	0		-	-			-	-	-		-		-		-			0
Other Local Transit	EB	0		0	0	0	0		-						-				-					0
	WB	0		0	0	0	0		-	-				-	-		-		-					0
Walk-in from North		200	-	20	50	20	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-			290
Walk-in from LV		510		20	60	20	0								-				-					610
Walk-in from EP		50		10	10	10	0	-	-	-		-	-	-	-	-	-		-	-	-			80
Walk-in from South		700		20	50	20	0		-	-		-	-	-	-		-		-	-	-			790
Walk-in from South-west		490.00		14.00	35.00	14.00																		
Walk-in from South-east		210.00		6.00	15.00	6.00																		
Total		8.070		160	520	160	0	10	0	100	70	30	450	0	910	0	0	380	2.050	30	0			12,940

From/To		Ontar	io Line	GO Rai	il - Local	GO Rail	- Express	Bathurst	Streetcar	Harbourfro	nt Streetcar	Duffer	rin Bus	Ossing	ton Bus	Other Loc	al Transit	Walk-out	Walk-out	Walk-out	Walk-out	to south-		Total
From/10		EB	WB	EB	WB	EB	WB	NB/EB	SB/WB	EB	WB	SB/EB	NB/WB	SB	NB	EB	WB	to north	to LV	to EP	to south	west	to south-	rotai
Ontario Line	EB	-		-	-				-	-				-	-	-			-	-		-		
Sittano Eme	WB		-	0	3,340	0	2,460	20	0	0	240	10	380	0	160	0	0	200	510	50	700	490.00	210.00	8,070
GO Rail - Local	EB	300		-	-			0	0	10	10	0	20	0	10	0	0	50	60	10	50	35.00	15.00	520
	WB	50		-	-			0	0	10	10	0	10	0	10	0	0	20	20	10	20	14.00	6.00	160
GO Rail - Express	EB	0		-	-			0	0	0	0	0	0	0	0	0	0	0	0	0	0		-	0
•	WB	50	-	-	-			0	0	10	10	0	10	0	10	0	0	20	20	10	20	14.00	6.00	160
Bathurst Streetcar	NB/EB	0		0	0	0	0		-	-	-			-	-	-			-	-				0
	SB/WB	0		0	10	0	0		-	-		-		-	-	-	-		-	-				10
larbourfront Streetcar	EB	20		0	30	0	20		-						-				-	-				70
	WB	0		0	60	0	40		-	-	-			-	-	-			-	-				100
Dufferin Bus	SB/EB	130		10	180	0	130		-	-		-		-	-	-	-		-	-				450
	NB/WB	10		0	10	0	10		-						-				-	-				30
Ossington bus	SB	260		10	370	0	270		-	-	-			-	-	-			-	-				910
	NB	0		0	0	0	0		-	-	-			-	-	-			-	-				0
Other Local Transit	EB	0		0	0	0	0		-						-	-			-	-				0
	WB	0		0	0	0	0		-	-	-			-	-	-			-	-				0
Walk-in from North		180		0	120	0	80		-	-		-		-	-	-	-		-	-				380
Walk-in from LV		1,740		10	170	0	130		-						-	-			-	-				2,050
Walk-in from EP		20		0	10	0	0		-	-	-			-	-	-			-	-				30
Walk-in from South		0		0	0	0	0		-	-	-	-	-	-	-	-	-		-	-				0
Walk-in from South-west		-	-	-																				
Walk-in from South-east		-	-	-	-																			
Total		2,760	-	30	4,300	0	3,140	20	0	30	270	10	420	0	190	0	0	290	610	80	790			12,940

From/To		Ontari	io Line	GO Rail	- Local	GO Rail	Express	Bathurst	Streetcar	Harbourfro	nt Streetcar	Duffer	in Bus	Ossing	ton Bus	Other Loc	al Transit	Walk-out	Walk-out		Walk-out	Total
11011110		EB	WB	EB	WB	EB	WB	NB/EB	SB/WB	EB	WB	SB/EB	NB/WB	SB	NB	EB	WB	to north	to LV	to EP	to south	Total
tario Line	EB	-		-	-	-	-		-	-		-		-	-	-		-	-	-	-	
	WB			0	830	0	620	10	0	0	60	0	90	0	40	0	0	50	130	10	180	2,020
Rail - Local	EB	70	-	-	-			0	0	0	0	0	10	0	0	0	0	10	10	0	10	110
	WB	10		-	-	-		0	0	0	0	0	0	0	0	0	0	10	10	0	10	40
Rail - Express	EB	0		-	-	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	WB	10	-	-	-			0	0	0	0	0	0	0	0	0	0	10	10	0	10	40
thurst Streetcar	NB/EB	0		0	0	0	0		-	-				-	-	-			-	-	-	0
	SB/WB	0		0	0	0	0		-	-				-	-	-			-	-	-	0
rbourfront Streetcar	EB	10	-	0	10	0	10		-	-				-	-	-	-	-	-	-	-	30
	WB	0		0	10	0	10		-	-				-	-	-			-	-	-	20
fferin Bus	SB/EB	30		0	40	0	30		-	-				-	-			-	-	-		100
	NB/WB	0		0	10	0	0		-	-									-		-	10
sington bus	SB	70		0	90	0	70		-	-				-	-	-			-	-	-	23
	NB	0		0	0	0	0		-	-				-	-	-			-	-	-	0
her Local Transit	EB	0	-	0	0	0	0		-	-				-	-	-	-	-	-	-	-	0
	WB	0		0	0	0	0		-	-				-	-	-			-	-	-	0
alk-in from North		50		0	30	0	20		-	-				-	-	-			-	-	-	10
lk-in from LV		430		0	40	0	30		-	-						-			-		-	50
alk-in from EP		13,890	-	20,470	2,950	0	2,170	190	0	120	2,400	20	1,840	0	760	-	-	-	2,800	-	-	47,6
lk-in from South		0	-	0	0	0	0		-	-				-	-	-		-	-	-	-	0
lk-in from South-west		-		-	-																	
lk-in from South-east		-		-	-																	
tal		14,570		20,470	4,010	0	2,960	200	0	120	2,460	20	1,940	0	800	0	0	80	2,960	10	210	50,81

From/To		Ontari	o Line	GO Rai	- Local	GO Rail	Express	Bathurst	Streetcar	Harbourfro	nt Streetcar	Duffer	in Bus	Ossing	ton Bus	Other Loc	al Transit	Walk-out	Walk-out	Walk-out	Walk-out		to south-	Total
Prom/10		EB	WB	EB	WB	EB	WB	NB/EB	SB/WB	EB	WB	SB/EB	NB/WB	SB	NB	EB	WB	to north	to LV	to EP	to south	to south-	east	lotai
Ontario Line	EB		-		-	-		-		-	-	-	-	-	-	-		-			-			
Sittatio Line	WB	-		75	440	75	0	0	0	0	30	20	190	0	390	0	0	260	2,560	30	0			4,070
GO Rail - Local	EB	4,930		-	-	-	-	10	0	90	50	20	260	0	540	0	0	170	250	10	0			6,330
JO Hall Edda!	WB	0				-		0	0	0	0	0	10	0	20	0	0	0	10	0	0			40
GO Rail - Express	EB	3,620	-		-	-		0	0	60	30	20	190	0	400	0	0	120	190	0	0			4,630
JO Rail - Express	WB	0		-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
Bathurst Streetcar	NB/EB	0		0	0	0	0				-					-					-			0
Jatilai St Gaeetcai	SB/WB	30	-	0	0	0	0	-		-	-	-	-	-	-	-		-			-			30
larbourfront Streetcar	EB	360		10	20	10	0														-			400
ian boar in our our out out	WB	0		10	10	10	0																	30
Oufferin Bus	SB/EB	560		10	30	10	0						-								-			610
Janes III Bas	NB/WB	10		0	0	0	0														-			10
Ossington bus	SB	230		10	10	10	0						-								-			260
soomgton buo	NB	0		0	0	0	0						-								-			0
Other Local Transit	EB	0		0	0	0	0			-	-		-	-	-	-		-			-			0
	WB	0		0	0	0	0						-								-			0
Valk-in from North		290		30	70	30	0						-								-			420
Valk-in from LV		750		30	90	30	0														-			900
Valk-in from EP		70		10	10	10	0				-					-		-			-			100
Valk-in from South		1,030	-	30	80	30	0	-		-	-	-	-	-	-	-		-			-			1,170
																								0
																								0
otal		11,880		215	760	215	0	10	0	150	110	60	650	0	1,350	0	0	550	3,010	40	0	0	0	19,000

From/To		Ontari	o Line	GO Rai	I - Local	GO Rail -	Express	Bathurst	Streetcar	Harbourfro	nt Streetcar	Duffer	in Bus	Ossing	ton Bus	Other Loc	cal Transit	Walk-out	Walk-out	Walk-out	Walk-out	walk-out to south-	walk-out	Total
FIUIIIII		EB	WB	EB	WB	EB	WB	NB/EB	SB/WB	EB	WB	SB/EB	NB/WB	SB	NB	EB	WB	to north	to LV	to EP	to south	west	east	l Otal
ntario Line	EB	-	-		-	-	-	-	-	-	-	-	-		-	-		-	-	-	-			
	WB			0	4,927	0	3,623	30	0	0	360	10	560	0	230	0	0	290	750	70	1,030			11,880
O Rail - Local	EB WB	440				-		0	0	10	20	0	30	0	10	0	0	70	90	10	80			760
		80				-		0	0	10	10	0	10	0	10	0	0	30	30	10	30			220
O Rail - Express	EB	0			•	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
	WB	75				-	-	0	0	10	10	0	10	0	10	0	0	30	30	10	30			215
athurst Streetcar	NB/EB	0		0	0	0	0				-					-								0
	SB/WB	30		0	10 50	0	0	-			-		-	-	-	-	-		-		-			10
rbourfront Streetcar	EB			0		0	30	-		-	-	-	-		-	-	-	-	-		-			110
	WB	0		- 0	90	0	60				-					-			-					150
ufferin Bus	SB/EB	190		10	260	0	190				-					-			-					650
	NB/WB	20		0	20	0	400			•	-	•				-			-		-			60
ssington bus	SB NB	390		20	540	0	400	-			-		-	-	-	-	-		-		-			1,350
		0		0	0	0	0	•			-	•	•			-	-		-	•	-			0
ther Local Transit	EB WB	0		0	0	0	0			•	-					-			-	•	-			0
lelle le form Newth	WB	000		0	U	0	400	-		-	-	-	-	-		-	-	-	•		-			0
alk-in from North 'alk-in from LV		260		10	170	0	120	-			-		-	-	-	-	-		-		-			550
alk-in from EP		2,560 30		10	250	0	190			•	-					-			-	•	-			3,010
alk-in from South		0		0	10	0	0	•			-	•	•			-	-		-	•	-			0
aik-in from South		0	-	U	0	U	0		-	-	-			-	-	-	-				-			0
																								0
		4 475			0.007						100							400			4 470			19,005
otal		4,075	-	40	6,327	0	4,633	30	0	30	400	10	610	0	260	U	U	420	900	100	1,170	U	0	19,0

From/To		Ontario Line		GO Rail - Local		GO Rail - Express		Bathurst Streetcar Harbou		Harbourfro	front Streetcar Dufferin		in Bus Ossington B		ton Bus	Other Local Transit		Walk-out	Walk-out	Walk-out	Walk-out		to south-	Total
		EB	WB	EB	WB	EB	WB	NB/EB	SB/WB	EB	WB	SB/EB	SB/EB NB/WB	SB	NB	EB	WB	to north	to LV	to EP	to south	west	to south-	TOTAL
Ontario Line	EB	-	-		-	-	-			-	-	-	-	-	-	-	-	-			-			
	WB	-	-	0	1,230	0	910	10	0	0	90	0	140	0	60	0	0	70	190	20	260			2,98
GO Rail - Local	EB	110	-	-	-	-		0	0	0	0	0	10	0	0	0	0	20	20	0	20			180
	WB	20	-			-		0	0	0	0	0	0	0	0	0	0	10	10	0	10			50
GO Rail - Express	EB	0	-			-		0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
	WB	20	-	-		-		0	0	0	0	0	0	0	0	0	0	10	10	0	10			50
Bathurst Streetcar	NB/EB	0	-	0	0	0	0		-	-	-	-	-		-	-		-	-	-	-			0
	SB/WB	0	-	0	0	0	0				-		-			-					-			0
larbourfront Streetcar	EB	10	-	0	10	0	10	-		-	-				-	-	-	-			-			30
	WB	0	-	0	20	0	20				-		-			-					-			40
ufferin Bus	SB/EB	50	-	0	60	0	50				-		-			-					-			160
	NB/WB	0	-	0	10	0	0	-		-	-				-	-	-	-			-			10
Ossington bus	SB	100	-	0	140	0	100				-		-			-					-			341
	NB	0	-	0	0	0	0				-		-			-					-			0
Other Local Transit	EB	0	-	0	0	0	0	-		-	-				-	-	-	-			-			0
	WB	0	-	0	0	0	0	-		-	-				-	-		-			-			0
Valk-in from North		70	-	0	40	0	30				-		-			-					-			140
/alk-in from LV		640	-	0	60	0	50	-			-		-			-					-			750
Valk-in from EP		13,890	-	20,470	2,950	0	2,170	190	0	120	2,400	20	1,840	0	760	-			2,800					47,6
/alk-in from South		0	-	0	0	0	0	-	-		-	-	-		-	-			-	-	-			0
																								0
																								0
tal		14,910		20,470	4,520	0	3,340	200	0	120	2,490	20	1,990	0	820	0	0	110	3,030	20	300	0	0	52,34

Appendix G: AutoTURN Turning Templates

Site A East Building Type G Loading Space

hdrinc.com

Front End Loader

mm

Width : 2400 Track : 2400 Lock to Lock Time 6.0 Steering Angle : 27.1

Not to scale

Site A West Building Type G Loading Space

hdrinc.com

MSU

Width : 2600
Track : 2600
Lock to Lock Time 6.0
Steering Angle : 40.2

mm

LSU

Width : 2600 Track : 2600 Lock to Lock Time 6.0 Steering Angle : 40.3

Not to scale

Site A West Building Type B Loading Space 1 Inbound

hdrinc.com

Use UPDATE/INSERT ADDRESS feature in ribbon hdrinc.com

10000

6500

6400

3400

¹800

(P)

2600

: 2600

: 40.2

: 2600 : 2600

: 40.3

MSU

Width : 2600
Track : 2600
Lock to Lock Time 6.0
Steering Angle : 40.2

LSU

Width : 2600
Track : 2600
Lock to Lock Time 6.0
Steering Angle : 40.3

Not to scale

Site A West Building Type B Loading Space 2 Inbound

hdrinc.com

MSU

Width : 2600 Track : 2600 Lock to Lock Time 6.0 Steering Angle : 40.2

mm

LSU

Width : 2600 Track : 2600 Lock to Lock Time 6.0 Steering Angle : 40.3

Not to scale

Site A West Building Type B Loading Space 2 Outbound

hdrinc.com

Site B Type G Loading Space

hdrinc.com

Use UPDATE/INSERT ADDRESS feature in ribbon

12000

5490

Site B Type B Loading Space 1

hdrinc.com Use UPDATE/INSERT ADDRESS feature in ribbon

Site B Type B Loading Space 2

hdrinc.com Use UPDATE/INSERT ADDRESS feature in ribbon